Formation of periodic microstructures involving the Ll2 phase in eutectic Al-Ti-Cr alloys

被引:17
作者
Barabash, OM
Milman, YV
Miracle, DV
Karpets, MV
Korzhova, NP
Legkaya, TN
Mordovets, NM
Podrezov, YN
Voskoboinik, IV
机构
[1] IN Frantsenich Inst Problems Mat Sci, UA-03142 Kiev, Ukraine
[2] GV Kurdumov Inst Mat Phys, UA-03142 Kiev, Ukraine
[3] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
关键词
aluminides; ternary alloy systems; eutectic structure; mechanical properties;
D O I
10.1016/S0966-9795(03)00122-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The temperature-concentration parameters defining the existence of the eutectic transformation Lreversible arrowLl(2) + beta at the Al-rich corner of the Al-Ti-Cr phase diagram have been studied. The temperature of this transformation decreases from 1275 to 1250degreesC with decreasing titanium content in the alloy, and its temperature interval is at most 10degreesC. The univariant eutectic transformation line Lreversible arrowLl(2) + beta was constructed, whose coordinates on the concentration triangle are defined by the equation (in at.%): C-A1 = 95.48 3.45C(T1) + 0.068 (C-T1)(2). As a result of this transformation, periodic microstructures consisting of lamellae and fibres of the cubic Ll(2) and beta phases are produced. Transformations in the solid state which occur during cooling lead to the precipitation of intermetallic compounds from the beta-solid solution: TiAlCr (structural type C14) or AlCr2 (structural type Cll(b)). The position of the boundary at which the change of precipitating phases occurs was determined. The analysis of mechanical properties shows that the transition from single-phase Ll(2) aloys to eutectic microstructures is accompanied by enhancement of both strength and plasticity, while retaining a high elastic modulus. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:953 / 962
页数:10
相关论文
共 26 条
[1]   Design of new cast aluminium materials using properties of monovariant eutectic transformation L⇆α-Al+Mg2Si [J].
Barabash, OM ;
Milman, YV ;
Korzhova, NP ;
Legkaya, TN ;
Podrezov, YN .
ALUMINUM ALLOYS 2002: THEIR PHYSICAL AND MECHANICAL PROPERTIES PTS 1-3, 2002, 396-4 :729-734
[2]   Experimental analysis and thermodynamic calculation of the structural regularities in the fusion diagram of the system of alloys Al-Mg-Si [J].
Barabash, OM ;
Sulgenko, OV ;
Legkaya, TN ;
Korzhova, NP .
JOURNAL OF PHASE EQUILIBRIA, 2001, 22 (01) :5-11
[3]  
BARABASH OM, 1986, CRYSTAL STRUCTURE ME
[4]  
BEAVEN PA, 1992, NATO ADV SCI I E-APP, V213, P413
[5]   Phase equilibria investigations on the aluminum-rich part of the binary system Ti-Al [J].
Braun, J ;
Ellner, M .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2001, 32 (05) :1037-1047
[6]  
Elliott R., 1983, EUTECTIC SOLIDIFICAT
[7]   Microstructure and mechanical behavior of a multiphase Al3Ti-based intermetallic alloy [J].
Fu, YY ;
Shi, R ;
Zhang, JX ;
Sun, J ;
Hu, GX .
INTERMETALLICS, 2000, 8 (9-11) :1251-1256
[8]   DEFORMATION OF POLYSYNTHETICALLY TWINNED CRYSTALS OF TIAL WITH A NEARLY STOICHIOMETRIC COMPOSITION [J].
FUJIWARA, T ;
NAKAMURA, A ;
HOSOMI, M ;
NISHITANI, SR ;
SHIRAI, Y ;
YAMAGUCHI, M .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1990, 61 (04) :591-606
[9]   Phase equilibria involving the tau-L1(2) and TiAl2 phases in the Ti-Al-Cr system [J].
Jewett, TJ ;
Ahrens, B ;
Dahms, M .
INTERMETALLICS, 1996, 4 (07) :543-556
[10]  
KIM YW, 1989, JOM-J MIN MET MAT S, V41, P24