Exact solitary wave solutions of the generalized (2+1) dimensional Boussinesq equation

被引:16
作者
Song, Ming [1 ]
Shao, Shuguang [2 ]
机构
[1] Yuxi Normal Univ, Fac Sci, Dept Math, Yuxi 653100, Peoples R China
[2] Nanyang Normal Univ, Sch Math & Stat, Nanyang 473061, Peoples R China
关键词
Generalized (2+1) dimensional Boussinesq equation; Bifurcation of phase portraits; Solitary wave solutions; KP EQUATION; BIFURCATION;
D O I
10.1016/j.amc.2010.09.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bifurcation method of dynamical systems is employed to investigate bifurcation of solitary waves in the generalized (2 + 1) dimensional Boussinesq equation. Numbers of solitary waves are given for each parameter condition. Under some parameter conditions, exact solitary wave solutions are obtained. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3557 / 3563
页数:7
相关论文
共 14 条
[1]   New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation [J].
Chen, HT ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :765-769
[2]   New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation [J].
Chen, Y ;
Yan, ZY ;
Zhang, H .
PHYSICS LETTERS A, 2003, 307 (2-3) :107-113
[3]  
Chow S.N., 1982, METHOD BIFURCATION T
[4]   The decomposition method for solving (2+1)-dimensional Boussinesq equation and (3+I)-dimensional KP equation [J].
El-Sayed, SM ;
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (02) :523-534
[5]  
GUCKENHEIMER J, 1999, NONLINEAR OSCILLATIO
[6]   A two-dimensional Boussinesq equation for water waves and some of its solutions [J].
Johnson, RS .
JOURNAL OF FLUID MECHANICS, 1996, 323 :65-78
[7]   Smooth and non-smooth traveling waves in a nonlinearly dispersive equation [J].
Li, JB ;
Liu, ZR .
APPLIED MATHEMATICAL MODELLING, 2000, 25 (01) :41-56
[8]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[9]   The application of bifurcation method to a higher-order KdV equation [J].
Liu, ZR ;
Yang, CX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :1-12
[10]   Peakons and their bifurcation in a generalized Camassa-Holm equation [J].
Liu, ZR ;
Qian, TF .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (03) :781-792