Machine Learning Applied to the Oxygen-18 Isotopic Composition, Salinity and Temperature/Potential Temperature in the Mediterranean Sea

被引:6
作者
Astray, Gonzalo [1 ]
Soto, Benedicto [2 ]
Barreiro, Enrique [3 ]
Galvez, Juan F. [3 ]
Mejuto, Juan C. [1 ]
机构
[1] Univ Vigo, Fac Ciencias, Dept Quim Fis, Orense 32004, Spain
[2] Univ Vigo, Dept Biol Vexetal & Ciencias Solo, Vigo 36310, Spain
[3] Univ Vigo, Dept Informat, Escola Super Enxeriaria Informat, Orense 32004, Spain
关键词
machine learning; artificial neural network; random forest; support vector machine; oxygen isotopic composition; salinity; temperature; potential temperature; modelling; SUPPORT VECTOR MACHINE; SURFACE TEMPERATURES; HEURISTIC METHOD; NEURAL-NETWORKS; RANDOM FORESTS; PREDICTION; OXYGEN; MODEL; SYSTEM; FORAMINIFERA;
D O I
10.3390/math9192523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study proposed different techniques to estimate the isotope composition (delta O-18), salinity and temperature/potential temperature in the Mediterranean Sea using five different variables: (i-ii) geographic coordinates (Longitude, Latitude), (iii) year, (iv) month and (v) depth. Three kinds of models based on artificial neural network (ANN), random forest (RF) and support vector machine (SVM) were developed. According to the results, the random forest models presents the best prediction accuracy for the querying phase and can be used to predict the isotope composition (mean absolute percentage error (MAPE) around 4.98%), salinity (MAPE below 0.20%) and temperature (MAPE around 2.44%). These models could be useful for research works that require the use of past data for these variables.
引用
收藏
页数:15
相关论文
共 75 条
[1]  
Aguilar-Martinez S., 2009, Int J Oceanogr, P1, DOI [10.1155/2009/167239, DOI 10.1155/2009/167239]
[2]   Usefulness of support vector machine to develop an early warning system for financial crisis [J].
Ahn, Jae Joon ;
Oh, Kyong Joo ;
Kim, Tae Yoon ;
Kim, Dong Ha .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) :2966-2973
[3]   A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion [J].
Ali, Farman ;
El-Sappagh, Shaker ;
Islam, S. M. Riazul ;
Kwak, Daehan ;
Ali, Amjad ;
Imran, Muhammad ;
Kwak, Kyung-Sup .
INFORMATION FUSION, 2020, 63 :208-222
[4]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[5]  
[Anonymous], 2011, Acm T. Intel. Syst. Tec., DOI DOI 10.1145/1961189.1961199
[6]   Prediction of daily sea surface temperature using artificial neural networks [J].
Aparna, S. G. ;
D'Souza, Selrina ;
Arjun, N. B. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (12) :4214-4231
[7]   Prediction Models to Control Aging Time in Red Wine [J].
Astray, Gonzalo ;
Carlos Mejuto, Juan ;
Martinez-Martinez, Victor ;
Nevares, Ignacio ;
Alamo-Sanza, Maria ;
Simal-Gandara, Jesus .
MOLECULES, 2019, 24 (05)
[8]   Seasonal variation of stable isotope ratios of size-fractionated zooplankton in the Bay of Marseille (NW Mediterranean Sea) [J].
Banaru, Daniela ;
Carlotti, Francois ;
Barani, Aude ;
Gregori, Gerald ;
Neffati, Nada ;
Harmelin-Vivien, Mireille .
JOURNAL OF PLANKTON RESEARCH, 2014, 36 (01) :145-156
[9]   Artificial neural networks: fundamentals, computing, design, and application [J].
Basheer, IA ;
Hajmeer, M .
JOURNAL OF MICROBIOLOGICAL METHODS, 2000, 43 (01) :3-31
[10]   O-18 MODELING OF FRESH-WATER INPUTS IN BAFFIN-BAY AND CANADIAN ARCTIC COASTAL WATERS [J].
BEDARD, P ;
HILLAIREMARCEL, C ;
PAGE, P .
NATURE, 1981, 293 (5830) :287-289