Density of integer solutions to diagonal quadratic forms

被引:6
作者
Browning, T. D. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 152卷 / 01期
关键词
quadratic forms; Hardy-Littlewood circle method; density of solutions; uniform upper bounds;
D O I
10.1007/s00605-007-0457-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q be a non-singular diagonal quadratic form in at least four variables. We provide upper bounds for the number of integer solutions to the equation Q = 0, which lie in a box with sides of length 2B, as B -> infinity. The estimates obtained are completely uniform in the coefficients of the form, and become sharper as they grow larger in modulus.
引用
收藏
页码:13 / 38
页数:26
相关论文
共 10 条
[1]  
Browning TD, 2005, J REINE ANGEW MATH, V584, P83
[2]   Counting rational points on diagonal quadratic surfaces [J].
Browning, TD .
QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 :11-31
[3]  
BROWNING TD, 2006, REPRESENTATION INTEG
[4]  
Davenport H., 2005, Analytic methods for Diophantine equations and Diophantine inequalities, V2nd
[5]   The density of rational points on curves and surfaces [J].
Heath-Brown, DR .
ANNALS OF MATHEMATICS, 2002, 155 (02) :553-598
[6]  
HeathBrown DR, 1996, J REINE ANGEW MATH, V481, P149
[7]   HYBRID BOUNDS FOR DIRICHLET L-FUNCTIONS .2. [J].
HEATHBROWN, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1980, 31 (122) :157-167
[8]  
MALYSEV AV, 1966, ZAP NAUCN SEM LENING, V1, P6
[9]   Equivalence of quadratic forms [J].
Siegel, CL .
AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 :658-680
[10]  
Titchmarsh E.C., 1986, THEORY RIEMANN ZETA