Parity of coefficients of mock theta functions

被引:9
作者
Wang, Liuquan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Mock theta functions; Parity; Hecke-type series; Rogers-Ramanujan identities; Partitions; RAMANUJAN LOST NOTEBOOK; PARTITION-FUNCTION; CONGRUENCES; IDENTITIES; VALUES; FORMS;
D O I
10.1016/j.jnt.2021.04.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the parity of coefficients of classical mock theta functions. Suppose g is a formal power series with integer coefficients, and let c(g; n) be the coefficient of q(n) in its series expansion. We say that g is of parity type (a, 1 - a) if c(g; n) takes even values with probability a for n >= 0. We show that among the 44 classical mock theta functions, 21 of them are of parity type (1, 0). We further conjecture that 19 mock theta functions are of parity type (1/2, 1/2 ) and 4 functions are of parity type (3/4, 1/4). We also give characterizations of n such that c(g; n) is odd for the mock theta functions of parity type (1, 0). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 99
页数:47
相关论文
共 59 条
[21]   Tenth order mock theta functions in Ramanujan's lost notebook II [J].
Choi, YS .
ADVANCES IN MATHEMATICS, 2000, 156 (02) :180-285
[22]   On second and eighth order mock theta functions [J].
Cui, Su-Ping ;
Gu, Nancy S. S. ;
Hao, Li-Jun .
RAMANUJAN JOURNAL, 2019, 50 (02) :393-422
[23]  
Garthwaite SA, 2008, MATH RES LETT, V15, P459, DOI 10.4310/MRL.2008.v15.n3.a6
[24]   THE COEFFICIENTS OF THE ω(q) MOCK THETA FUNCTION [J].
Garthwaite, Sharon Anne .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (06) :1027-1042
[25]   CRANKS AND T-CORES [J].
GARVAN, F ;
KIM, DS ;
STANTON, D .
INVENTIONES MATHEMATICAE, 1990, 101 (01) :1-17
[26]   Universal mock theta functions and two-variable Hecke-Rogers identities [J].
Garvan, F. G. .
RAMANUJAN JOURNAL, 2015, 36 (1-2) :267-296
[27]  
Garvan F.G., ARXIV190704803V1
[28]  
Gasper G., 2004, BASIC HYPERGEOMETRIC, V35
[29]   Some eighth order mock theta functions [J].
Gordon, B ;
McIntosh, RJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :321-335
[30]  
Gordon B., 2011, DEV MATH DEV MATH, V23, P83