Parity of coefficients of mock theta functions

被引:9
作者
Wang, Liuquan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Mock theta functions; Parity; Hecke-type series; Rogers-Ramanujan identities; Partitions; RAMANUJAN LOST NOTEBOOK; PARTITION-FUNCTION; CONGRUENCES; IDENTITIES; VALUES; FORMS;
D O I
10.1016/j.jnt.2021.04.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the parity of coefficients of classical mock theta functions. Suppose g is a formal power series with integer coefficients, and let c(g; n) be the coefficient of q(n) in its series expansion. We say that g is of parity type (a, 1 - a) if c(g; n) takes even values with probability a for n >= 0. We show that among the 44 classical mock theta functions, 21 of them are of parity type (1, 0). We further conjecture that 19 mock theta functions are of parity type (1/2, 1/2 ) and 4 functions are of parity type (3/4, 1/4). We also give characterizations of n such that c(g; n) is odd for the mock theta functions of parity type (1, 0). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 99
页数:47
相关论文
共 59 条
[1]  
Andrews G.E., 2018, Ramanujan's Lost Notebook: Part V
[2]   RAMANUJAN LOST NOTEBOOK .7. THE 6TH ORDER MOCK THETA FUNCTIONS [J].
ANDREWS, GE ;
HICKERSON, D .
ADVANCES IN MATHEMATICS, 1991, 89 (01) :60-105
[3]   THE 5TH AND 7TH ORDER MOCK THETA-FUNCTIONS [J].
ANDREWS, GE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 293 (01) :113-134
[4]   PARTITIONS AND INDEFINITE QUADRATIC-FORMS [J].
ANDREWS, GE ;
DYSON, FJ ;
HICKERSON, D .
INVENTIONES MATHEMATICAE, 1988, 91 (03) :391-407
[5]  
Andrews GE, 2017, RAMANUJAN J, V43, P347, DOI 10.1007/s11139-016-9812-2
[6]   Self-conjugate vector partitions and the parity of the spt-function [J].
Andrews, George E. ;
Garvan, Frank G. ;
Liang, Jie .
ACTA ARITHMETICA, 2013, 158 (03) :199-218
[7]  
Bellaïche J, 2018, RES MATH SCI, V5, DOI 10.1007/s40687-018-0123-7
[8]   Parity of the coefficients of modular forms [J].
Bellaiche, Joel ;
Nicolas, Jean-Louis .
RAMANUJAN JOURNAL, 2016, 40 (01) :1-44
[9]   Congruences for Ramanujan's f and ω functions via generalized Borcherds products [J].
Berg, Jen ;
Castillo, Abel ;
Grizzard, Robert ;
Kala, Vitezslav ;
Moy, Richard ;
Wang, Chongli .
RAMANUJAN JOURNAL, 2014, 35 (02) :327-338
[10]   On the parity of partition functions [J].
Berndt, BC ;
Yee, AJ ;
Zaharescu, A .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (04) :437-459