Silk Nanocrack Origami for Controllable Random Lasers

被引:24
作者
Dogru-Yuksel, Itir Bakis [1 ]
Jeong, Chanho [2 ]
Park, Byeonghak [3 ]
Han, Mertcan [1 ]
Lee, Ju Seung [3 ]
Kim, Tae-il [2 ,3 ]
Nizamoglu, Sedat [1 ]
机构
[1] Koc Univ, Dept Elect & Elect Engn, TR-34450 Istanbul, Turkey
[2] Sungkyunkwan Univ SKKU, Dept Biomed Engn, Suwon 16419, South Korea
[3] Sungkyunkwan Univ SKKU, Sch Chem Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
biolasers; nanocracks; origami lasers; random lasers; silk fibroin; FIBROIN; LIGHT; FEEDBACK;
D O I
10.1002/adfm.202104914
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ancient art of Origami started to evolve as a contemporary technological method for the realization of morphologically induced and unconventional advanced functional structures. Here, directional random lasers (RLs) that are formed by folding (i.e., ori) dye-doped natural protein silk fibroin (SF) film as paper (i.e., kami) are demonstrated. The folding stress induces parallel nanocracks that simultaneously function as diffuse reflectors and laser light outcouplers at the boundaries of the optical gain medium. Random lasing is observed after a threshold energy level of 0.8 nJ mu m(-2) with an in-plane divergence-angle of 13 degrees. Moreover, the central laser emission wavelength is tuned from 588.7 to 602.1 nm by controlling the adjacent nanocracks distance and additional laser emission directions are introduced by further folding SF at different in-plane angles that induce rectangular and triangular geometries. More significantly, RL is fabricated via a quick, scalable, and environmentally friendly stress-induced nanocracking process maintaining its mechanical and optical properties even after 10,000 times of bending test. Hence, this study introduces a novel form of biocompatible, biodegradable, and large-area protein microlasers by using an unconventional laser fabrication approach.
引用
收藏
页数:9
相关论文
共 56 条
[21]   Physically Transient Distributed Feedback Laser Using Optically Activated Silk Bio-Ink [J].
Jung, Hyunho ;
Min, Kyungtaek ;
Jeon, Heonsu ;
Kim, Sunghwan .
ADVANCED OPTICAL MATERIALS, 2016, 4 (11) :1738-1743
[22]   Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing [J].
Kim, Soon Hee ;
Yeon, Yeung Kyu ;
Lee, Jung Min ;
Chao, Janet Ren ;
Lee, Young Jin ;
Seo, Ye Been ;
Sultan, Md. Tipu ;
Lee, Ok Joo ;
Lee, Ji Seung ;
Yoon, Sung-il ;
Hong, In-Sun ;
Khang, Gilson ;
Lee, Sang Jin ;
Yoo, James J. ;
Park, Chan Hum .
NATURE COMMUNICATIONS, 2018, 9
[23]  
Lang RJ, 2007, PHYS WORLD, V20, P30
[24]   Bioinspired Artificial Eyes: Optic Components, Digital Cameras, and Visual Prostheses [J].
Lee, Gil Ju ;
Choi, Changsoon ;
Kim, Dae-Hyeong ;
Song, Young Min .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (24)
[25]   Flexible random lasers with tunable lasing emissions [J].
Lee, Ya-Ju ;
Chou, Chun-Yang ;
Yang, Zu-Po ;
Thi Bich Hanh Nguyen ;
Yao, Yung-Chi ;
Yeh, Ting-Wei ;
Tsai, Meng-Tsan ;
Kuo, Hao-Chun .
NANOSCALE, 2018, 10 (22) :10403-10411
[26]   Lotus-Leaf-Inspired Flexible and Tunable Random Laser [J].
Li, Xueyang ;
Liu, Hao ;
Xu, Xiaoyan ;
Yang, Bing ;
Yuan, Hong ;
Guo, Jingwei ;
Sang, Fengting ;
Jin, Yuqi .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (08) :10050-10057
[27]   Wavelength-encoded laser particles for massively multiplexed cell tagging [J].
Martino, Nicola ;
Kwok, Sheldon J. J. ;
Liapis, Andreas C. ;
Forward, Sarah ;
Jang, Hoon ;
Kim, Hwi-Min ;
Wu, Sarah J. ;
Wu, Jiamin ;
Dannenberg, Paul H. ;
Lee, Yong-Hee ;
Jang, Sun-Joo ;
Yun, Seok-Hyun .
NATURE PHOTONICS, 2019, 13 (10) :720-+
[28]   Silk-hydrogel Lenses for Light-emitting Diodes [J].
Melikov, Rustamzhon ;
Press, Daniel Aaron ;
Kumar, Baskaran Ganesh ;
Dogru, Itir Bakis ;
Sadeghi, Sadra ;
Chirea, Mariana ;
Yilgor, Iskender ;
Nizamoglu, Sedat .
SCIENTIFIC REPORTS, 2017, 7
[29]   Dramatically Enhanced Mechanosensitivity and Signal-to-Noise Ratio of Nanoscale Crack-Based Sensors: Effect of Crack Depth [J].
Park, Byeonghak ;
Kim, Jisun ;
Kang, Daeshik ;
Jeong, Chanho ;
Kim, Kwang Su ;
Kim, Jong Uk ;
Yoo, Pil J. ;
Kim, Tae-il .
ADVANCED MATERIALS, 2016, 28 (37) :8130-8137
[30]  
Park S, 2020, NAT COMMUN, V11, P4371