Gray-Box Modeling for the Optimization of Chemical Processes

被引:41
作者
Asprion, Norbert [1 ]
Boettcher, Roger [1 ]
Pack, Robert [1 ]
Stavrou, Marina-Eleni [1 ]
Hoeller, Johannes [2 ]
Schwientek, Jan [2 ]
Bortz, Michael [2 ]
机构
[1] BASF SE, Digitalizat Proc Res & Chem Engn, Carl Bosch Str 38, D-67056 Ludwigshafen, Germany
[2] Fraunhofer Inst Ind Math ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
关键词
Data selection; Decision support; Flowsheet simulation; Gray-box models; Hybrid models; Optimization; Soft sensing; INCREMENTAL IDENTIFICATION; MULTICRITERIA OPTIMIZATION; DECISION-SUPPORT; HYBRID MODELS; SIMULATION; DESIGN;
D O I
10.1002/cite.201800086
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The availability of predictive models for chemical processes is the basic prerequisite for offline process optimization. In cases where a predictive model is missing for a process unit within a larger process flowsheet, measured operating data of the process can be used to set up such models combining physical knowledge and process data. In this contribution, the creation and integration of such gray-box models within the framework of a flowsheet simulator is presented. Results of optimization using different gray-box models are shown for a virtual cumene process.
引用
收藏
页码:305 / 313
页数:9
相关论文
共 22 条
[1]   Simulation and Multi-criteria Optimization under Uncertain Model Parameters of a Cumene Process [J].
Asprion, Norbert ;
Blagov, Sergej ;
Boettcher, Roger ;
Schwientek, Jan ;
Burger, Jakob ;
von Harbou, Erik ;
Bortz, Michael .
CHEMIE INGENIEUR TECHNIK, 2017, 89 (05) :665-674
[2]   INES - An Interface Between Experiments and Simulation to Support the Development of Robust Process Designs [J].
Asprion, Norbert ;
Benfer, Regina ;
Blagov, Sergej ;
Boettcher, Roger ;
Bortz, Michael ;
Berezhnyi, Maksym ;
Burger, Jakob ;
von Harbou, Erik ;
Kuefer, Karl-Heinz ;
Hasse, Hans .
CHEMIE INGENIEUR TECHNIK, 2015, 87 (12) :1810-1825
[3]   Incremental and simultaneous identification of reaction kinetics: methods and comparison [J].
Bardow, A ;
Marquardt, W .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (13) :2673-2684
[4]  
BISHOP C. M., 2006, Pattern recognition and machine learning, DOI [DOI 10.1117/1.2819119, 10.1007/978-0-387-45528-0]
[5]   Linking Models and Experiments [J].
Bonvin, D. ;
Georgakis, C. ;
Pantelides, C. C. ;
Barolo, M. ;
Grover, M. A. ;
Rodrigues, D. ;
Schneider, R. ;
Dochain, D. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (25) :6891-6903
[6]   Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets [J].
Bortz, M. ;
Burger, J. ;
Asprion, N. ;
Blagov, S. ;
Boettcher, R. ;
Nowak, U. ;
Scheithauer, A. ;
Welke, R. ;
Kuefer, K. -H. ;
Hasse, H. .
COMPUTERS & CHEMICAL ENGINEERING, 2014, 60 :354-363
[7]   ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems [J].
Boukouvala, Fani ;
Floudas, Christodoulos A. .
OPTIMIZATION LETTERS, 2017, 11 (05) :895-913
[8]   Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption [J].
Boukouvala, Fani ;
Hasan, M. M. Faruque ;
Floudas, Christodoulos A. .
JOURNAL OF GLOBAL OPTIMIZATION, 2017, 67 (1-2) :3-42
[9]   Incremental identification of kinetic models for homogeneous reaction systems [J].
Brendel, Marc ;
Bonvin, Dominique ;
Marquardt, Wolfgang .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (16) :5404-5420
[10]   Multi-Objective Optimization and Decision Support in Process Engineering - Implementation and Application [J].
Burger, Jakob ;
Asprion, Norbert ;
Blagov, Sergej ;
Boettcher, Roger ;
Nowak, Uwe ;
Bortz, Michael ;
Welke, Richard ;
Kuefer, Karl-Heinz ;
Hasse, Hans .
CHEMIE INGENIEUR TECHNIK, 2014, 86 (07) :1065-1072