Fast Synthesis of Persistent Fractional Brownian Motion

被引:3
作者
Inacio, Pedro R. M. [1 ]
Freire, Mario M. [1 ]
Pereira, Manuela [1 ]
Monteiro, Paulo P. [1 ,2 ]
机构
[1] Univ Beira Interior, Dept Comp Sci, Inst Telecomunicacoes, P-6200001 Covilha, Portugal
[2] Nokia Siemens Networks Portugal SA, P-6200001 Covilha, Portugal
来源
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION | 2012年 / 22卷 / 02期
关键词
Computer-based simulation; fractional Brownian motion; fractional Gaussian noise; generation algorithm; hurst parameter; long-range dependence; persistence; self-similarity;
D O I
10.1145/2133390.2133395
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Due to the relevance of self-similarity analysis in several research areas, there is an increased interest in methods to generate realizations of self-similar processes, namely in the ones capable of simulating long-range dependence. This article describes a new algorithm to approximate persistent fractional Brownian motions with a predefined Hurst parameter. The algorithm presents a computational complexity of O(n) and generates sequences with n (n is an element of N) values with a small multiple of log(2)(n) variables. Because it operates in a sequential manner, the algorithm is suitable for simulations demanding real-time operation. A network traffic simulator is presented as one of its possible applications.
引用
收藏
页数:21
相关论文
共 24 条
[1]  
[Anonymous], THESIS RHEINISCH WES
[2]  
[Anonymous], 1997, COWLES FDN DISCUSSIO
[3]  
Dieker T., 2004, THESIS U TWENTE AMST
[4]   A simple construction of the fractional Brownian motion [J].
Enriquez, N .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (02) :203-223
[5]  
GOLDBERGER A. L., 2003, PHYSIONET RES RESOUR
[6]  
JEONG HD, 1999, P IEEE INT C NETW IC, P75
[7]  
Kenkel N.C., 1996, COENOSES, V11, P77, DOI DOI 10.1002/PBC
[8]  
LELAND W. E., 1993, P C COMM ARCH PROT A, V25, P183
[9]   ON THE SELF-SIMILAR NATURE OF ETHERNET TRAFFIC (EXTENDED VERSION) [J].
LELAND, WE ;
TAQQU, MS ;
WILLINGER, W ;
WILSON, DV .
IEEE-ACM TRANSACTIONS ON NETWORKING, 1994, 2 (01) :1-15
[10]  
Mandelbrot B., 1982, FRACTAL GEOMETRY NAT