Automotive Subzero Cold-Start Quasi-Adiabatic Proton Exchange Membrane Fuel Cell Fixture: Design and Validation

被引:4
作者
Pistono, Antonio O. [1 ]
Rice, Cynthia A. [1 ]
机构
[1] Tennessee Technol Univ, Dept Chem Engn, Cookeville, TN 38505 USA
关键词
proton exchange membrane fuel cells; subzero cold-starts; automotive; isothermal water fill tests; GAS-DIFFUSION LAYER; CATALYST LAYER; ICE FORMATION; WATER STORAGE; FREEZE-START; ELECTRODE; PERFORMANCE; DEGRADATION; OPERATION; BEHAVIOR;
D O I
10.3390/molecules25061410
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Subzero automotive cold-starts of proton exchange membrane fuel cell (PEMFC) stacks require accelerated thermal rises to achieve nominal operating conditions and close-to-instantaneous usable output power. Advances in the material, structure and operational dependence on the balance between the maximum power output and the electrochemical conversion of hydrogen and oxygen into water requires validation with subzero cold-starts. Herein are presented the design and validation of a quasi-adiabatic PEMFC to enable single-cell evaluation, which would provide a more cost-effective option than stack-level testing. At -20 degrees C, the operational dependence of the preconditioned water content (3.2 verse 6.2) for a galvanic cold-start (<600 mA cm(-2)) was counter to that of a laboratory-scale isothermal water fill test (10 mA cm(-2)). The higher water content resulted in a faster startup to appreciable power output within 0.39 min versus 0.65 min. The water storage capacity, as determined from the isothermal water fill test, was greater, for the lower initial water content of 3.2, than 6.2, 17.4 +/- 0.3 mg versus 12.8 +/- 0.4 mg, respectively. Potentiostatic cold-starts produced usable power in 0.09 min. The versatility and reproducibility of the single cell quasi-adiabatic fixture avail it to future universal cold-start stack relevant analyzes involving operational parameters and advanced materials, including: applied load, preconditioning, interchanging flow field structures, diffusion media, and catalyst coated membranes.
引用
收藏
页数:15
相关论文
共 64 条
[1]  
Alduchov OA, 1996, J APPL METEOROL, V35, P601, DOI 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO
[2]  
2
[3]  
[Anonymous], 1975, AICHE J, DOI DOI 10.1002/AIC.690210140
[4]  
[Anonymous], ECS T
[5]   Cold Start of a Polymer-Electrolyte Fuel Cell II. Model Verification Using Parametric Studies [J].
Balliet, Ryan J. ;
Newman, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) :B939-B947
[6]   When Size Matters: Active Area Dependence of PEFC Cold Start Capability [J].
Biesdorf, J. ;
Stahl, P. ;
Siegwart, M. ;
Schmidt, T. J. ;
Boillat, Pierre .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) :F1231-F1235
[7]   Statistical Analysis of Isothermal Cold Starts of PEFCs: Impact of Gas Diffusion Layer Properties [J].
Biesdorf, Johannes ;
Forner-Cuenca, A. ;
Siegwart, M. ;
Schmidt, T. J. ;
Boillat, Pierre .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (10) :F1258-F1266
[8]   Effects of water removal on the performance degradation of PEMFCs repetitively brought to &lt;0°C [J].
Cho, EA ;
Ko, JJ ;
Ha, HY ;
Hong, SA ;
Lee, KY ;
Lim, TW ;
Oh, IH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (05) :A661-A665
[9]   Non-isothermal melting of ice in the gas-diffusion layer of a proton-exchange-membrane fuel cell [J].
Dursch, T. J. ;
Trigub, G. J. ;
Liu, J. F. ;
Radke, C. J. ;
Weber, A. Z. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 67 :896-901
[10]   Isothermal Ice Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell [J].
Dursch, T. J. ;
Ciontea, M. A. ;
Radke, C. J. ;
Weber, A. Z. .
LANGMUIR, 2012, 28 (02) :1222-1234