Gaussian-Gamma collaborative filtering: A hierarchical Bayesian model for recommender systems

被引:3
作者
Luo, Cheng [1 ]
Zhang, Bo [2 ]
Xiang, Yang [1 ]
Qi, Man [3 ]
机构
[1] Tongji Univ, Sch Elect & Informat Engn, Shanghai, Peoples R China
[2] Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai, Peoples R China
[3] Canterbury Christ Church Univ, Dept Comp, Canterbury CT1 1QU, Kent, England
基金
中国国家自然科学基金;
关键词
Gaussian-Gamma distribution; Recommender system; Hierarchical Bayesian model; Gibbs Sampling; Performance evaluation; MATRIX FACTORIZATION; OPTIMIZATION; INFERENCE;
D O I
10.1016/j.jcss.2017.03.007
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The traditional collaborative filtering (CF) suffers from two key challenges, namely, the normal assumption that it is not robust, and it is difficult to set in advance the penalty terms of the latent features. We therefore propose a hierarchical Bayesian model-based CF and the related inference algorithm. Specifically, we impose a Gaussian-Gamma prior on the ratings, and the latent features. We show the model is more robust, and the penalty terms can be adapted automatically in the inference. We use Gibbs sampler for the inference and provide a statistical explanation. We verify the performance using both synthetic and real datasets. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:42 / 56
页数:15
相关论文
共 32 条
  • [1] [Anonymous], CONTRIBUTION YOUNG R
  • [2] Bayesian Polynomial Regression Models to Fit Multiple Genetic Models for Quantitative Traits
    Bae, Harold
    Perls, Thomas
    Steinberg, Martin
    Sebastiani, Paola
    [J]. BAYESIAN ANALYSIS, 2015, 10 (01): : 53 - 74
  • [3] BISHOP C. M., 2006, Pattern recognition and machine learning, DOI [DOI 10.1117/1.2819119, 10.1007/978-0-387-45528-0]
  • [4] Bjorck A., 1996, J SOC IND APPL MATH, V21, P1081
  • [5] EXPLAINING THE GIBBS SAMPLER
    CASELLA, G
    GEORGE, EI
    [J]. AMERICAN STATISTICIAN, 1992, 46 (03) : 167 - 174
  • [6] Funk S., 2006, NETFFIX UPDATE TRY T
  • [7] Inference with normal-gamma prior distributions in regression problems
    Griffin, Jim E.
    Brown, Philip J.
    [J]. BAYESIAN ANALYSIS, 2010, 5 (01): : 171 - 188
  • [8] Jamali M., 2010, P 4 ACM C REC SYST S, P135
  • [9] Bounded matrix factorization for recommender system
    Kannan, Ramakrishnan
    Ishteva, Mariya
    Park, Haesun
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 39 (03) : 491 - 511
  • [10] MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS
    Koren, Yehuda
    Bell, Robert
    Volinsky, Chris
    [J]. COMPUTER, 2009, 42 (08) : 30 - 37