Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry

被引:62
作者
Billiet, Stijn [1 ]
Van Camp, Wim [1 ]
Hillewaere, Xander K. D. [1 ]
Rahier, Hubert [2 ]
Du Prez, Filip E. [1 ]
机构
[1] Univ Ghent, Polymer Chem Res Grp, Dept Organ Chem, B-9000 Ghent, Belgium
[2] Vrije Univ Brussel, Fac Engn, Dept Mat & Chem MACH, Phys Chem & Polymer Sci FYSC, B-1050 Brussels, Belgium
基金
比利时弗兰德研究基金会;
关键词
Self-healing; Autonomous; Maleimide; POLYMERIC MATERIALS; KINETICS; DICYCLOPENTADIENE;
D O I
10.1016/j.polymer.2012.03.061
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Maleimide chemistry involving amines and thiols is presented and evaluated for the design of autonomous self-healing epoxy materials. Model reactions show that amines react rapidly with maleimide compounds at room temperature via the Michael addition reaction. Moreover, thiols and maleimides react readily in the presence of tertiary amines that are present in the epoxy material. The maleimide conjugation reaction with residual amines in the epoxy material ensures chemical bonding of the newly formed network with the original materials during crack healing, while in the crack plane, multifunctional thiols react with difunctional maleimides to fill the crack area. Healing efficiencies are evaluated using the tapered double cantilever beam (TDCB) test method with manual injection of the healing agents, revealing a maximum healing efficiency up to 121% for EPON 828 epoxy material. Furthermore, the use of maleimide chemistry has also been evaluated for self-healing applications towards a cold-curing resin that is currently used for infusion of wind turbine blades (RIM resin). While the healing efficiency is strongly dependent on the type of epoxy material, the average maximum peak load for fracture after healing is roughly the same for all tested epoxy materials. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2320 / 2326
页数:7
相关论文
共 57 条
[1]   Self-Healing Polymers and Composites [J].
Blaiszik, B. J. ;
Kramer, S. L. B. ;
Olugebefola, S. C. ;
Moore, J. S. ;
Sottos, N. R. ;
White, S. R. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 40, 2010, 40 :179-211
[2]   Fracture testing of a self-healing polymer composite [J].
E. N. Brown ;
N. R. Sottos ;
S. R. White .
Experimental Mechanics, 2002, 42 (4) :372-379
[3]  
Burattini S, 1973, CHEM SOC REV, V39
[4]   Full recovery of fracture toughness using a nontoxic solvent-based self-healing system [J].
Caruso, Mary M. ;
Blaiszik, Benjamin J. ;
White, Scott R. ;
Sottos, Nancy R. ;
Moore, Jeffrey S. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (13) :1898-1904
[5]   Solvent-promoted self-healing epoxy materials [J].
Caruso, Mary M. ;
Delafuente, David A. ;
Ho, Victor ;
Sottos, Nancy R. ;
Moore, Jeffrey S. ;
White, Scott R. .
MACROMOLECULES, 2007, 40 (25) :8830-8832
[6]   Mechanically-Induced Chemical Changes in Polymeric Materials [J].
Caruso, Mary M. ;
Davis, Douglas A. ;
Shen, Qilong ;
Odom, Susan A. ;
Sottos, Nancy R. ;
White, Scott R. ;
Moore, Jeffrey S. .
CHEMICAL REVIEWS, 2009, 109 (11) :5755-5798
[7]   Nucleophile-Initiated Thiol-Michael Reactions: Effect of Organocatalyst, Thiol, and Ene [J].
Chan, Justin W. ;
Hoyle, Charles E. ;
Lowe, Andrew B. ;
Bowman, Mark .
MACROMOLECULES, 2010, 43 (15) :6381-6388
[8]   New thermally remendable highly cross-linked polymeric materials [J].
Chen, XX ;
Wudl, F ;
Mal, AK ;
Shen, HB ;
Nutt, SR .
MACROMOLECULES, 2003, 36 (06) :1802-1807
[9]   A thermally re-mendable cross-linked polymeric material [J].
Chen, XX ;
Dam, MA ;
Ono, K ;
Mal, A ;
Shen, HB ;
Nutt, SR ;
Sheran, K ;
Wudl, F .
SCIENCE, 2002, 295 (5560) :1698-1702
[10]   Polydimethylsiloxane-based self-healing materials [J].
Cho, SH ;
Andersson, HM ;
White, SR ;
Sottos, NR ;
Braun, PV .
ADVANCED MATERIALS, 2006, 18 (08) :997-+