On Convergence of Proportionate-Type Normalized Least Mean Square Algorithms

被引:29
作者
Das, Rajib Lochan [1 ]
Chakraborty, Mrityunjoy [1 ]
机构
[1] Indian Inst Technol, Dept Elect & Elect Commun Engn, Kharagpur 721302, W Bengal, India
关键词
Excess mean square error (EMSE); PtNLMS algorithm; sparse adaptive filters; stability of EMSE;
D O I
10.1109/TCSII.2014.2386261
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new convergence analysis is presented for a well-known sparse adaptive filter family, namely, the proportionate-type normalized least mean square (PtNLMS) algorithms, where, unlike all the existing approaches, no assumption of whiteness is made on the input. The analysis relies on a "transform" domain based model of the PtNLMS algorithms and brings out certain new convergence features not reported earlier. In particular, it establishes the universality of the steady-state excess mean square error formula derived earlier under white input assumption. In addition, it brings out a new relation between the mean square deviation of each tap weight and the corresponding gain factor used in the PtNLMS algorithm.
引用
收藏
页码:491 / 495
页数:5
相关论文
共 19 条
  • [1] [Anonymous], 2003, Fundamentals of Adaptive Filtering
  • [2] Adaptive Combination of Proportionate Filters for Sparse Echo Cancellation
    Arenas-Garcia, Jeronimo
    Figueiras-Vidal, Anibal R.
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2009, 17 (06): : 1087 - 1098
  • [3] Compressed channel sensing
    Bajwa, Waheed U.
    Haupt, Jarvis
    Raz, Gil
    Nowak, Robert
    [J]. 2008 42ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-3, 2008, : 5 - +
  • [4] Benesty J, 2002, INT CONF ACOUST SPEE, P1881
  • [5] Das RL, 2012, IEEE INT SYMP CIRC S, P2745, DOI 10.1109/ISCAS.2012.6271877
  • [6] Improving convergence of the PNLMS algorithm for sparse impulse response identification
    Deng, HY
    Doroslovacki, M
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (03) : 181 - 184
  • [7] Proportionate normalized least-mean-squares adaptation in echo cancelers
    Duttweiler, DL
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2000, 8 (05): : 508 - 518
  • [8] Hänsler E, 2006, SIG COM TEC, P3
  • [9] Haykin S., 1986, ADAPTIVE FILTER THEO, DOI DOI 10.1121/1.3574766
  • [10] Kocic M, 1995, OCEANS '95 MTS/IEEE - CHALLENGES OF OUR CHANGING GLOBAL ENVIRONMENT, CONFERENCE PROCEEDINGS, VOLS 1-3, P1417, DOI 10.1109/OCEANS.1995.528671