Optimal Projective Synchronization of Non-identical Fractional-Order Chaotic Systems with Uncertainties and Disturbances Using Fractional Sliding Mode Control with GA and PSO Algorithms

被引:4
作者
Djari, Abdelhamid [1 ]
机构
[1] Larbi Tebessi Univ Tebessa, Elect Engn Dept, Djari, Algeria
关键词
Fractional calculus; Fractional-order controllers; Chaotic systems; Sliding mode controller; Genetic algorithm; Particle swarm optimisation; STABILIZATION;
D O I
10.1007/s13369-020-04570-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work presents an optimal projective synchronization of non-identical fractional-order chaotic systems (FOCS) in the presence of uncertainties and external disturbances using a fractional sliding mode controller (FSMC). For the first time, and based on Lyapunov stability theory, fractional-order sliding surfaces are proposed to design signal controllers for forcing errors behavior to zero and to make the states of the FOCS asymptotically stable. Then, to obtain optimal control parameters, GA and PSO algorithms will be introduced. An example of non-identical FOCS are proposed to demonstrate the effectiveness of the proposed optimal FSMC approach compared with the integer one. The simulation results show the applicability and efficiency of the proposed scheme.
引用
收藏
页码:10147 / 10161
页数:15
相关论文
共 44 条
[1]  
Abdelhamid D, 2016, CONTROL ENG APPL INF, V18, P14
[2]  
[Anonymous], P INT C COMP COMM IN
[3]   Fractional sliding mode control of wind turbine for maximum power point tracking [J].
Ardjal, Aghiles ;
Mansouri, Rachid ;
Bettayeb, Maamar .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2019, 41 (02) :447-457
[4]   Synchronization of different fractional order chaotic systems using active control [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3536-3546
[5]  
Bouarroudj N, 2017, INT CONF SYST CONTRO, P45, DOI 10.1109/ICoSC.2017.7958641
[6]   Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems [J].
Boulkroune, A. ;
Bouzeriba, A. ;
Bouden, T. .
NEUROCOMPUTING, 2016, 173 :606-614
[7]  
C Y, 2014, AUTOMATICA, V50, P73
[8]  
C Y, 2017, APPL MATH MODEL, V44, P5
[9]   Bifurcations in an Internet congestion control system with distributed delay [J].
Cao, Yang .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 :54-63
[10]   A New Hybrid Chaotic Map and Its Application on Image Encryption and Hiding [J].
Cao, Yang .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013