The two-dimensional problem of steady waves on water of finite depth: regimes without waves of small amplitude
被引:1
作者:
Kozlov, V
论文数: 0引用数: 0
h-index: 0
机构:Russian Acad Sci, Lab Math Modelling Wave Phenomena, Inst Problems Mech Engn, St Petersburg 199178, Russia
Kozlov, V
Kuznetsov, N
论文数: 0引用数: 0
h-index: 0
机构:Russian Acad Sci, Lab Math Modelling Wave Phenomena, Inst Problems Mech Engn, St Petersburg 199178, Russia
Kuznetsov, N
机构:
[1] Russian Acad Sci, Lab Math Modelling Wave Phenomena, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
来源:
COMPTES RENDUS MECANIQUE
|
2005年
/
333卷
/
10期
关键词:
fluid mechanics;
steady water waves;
Bernoulli's equation;
small amplitude;
Froude number;
rate of flow;
D O I:
10.1016/j.crme.2005.09.001
中图分类号:
O3 [力学];
学科分类号:
08 ;
0801 ;
摘要:
The two-dimensional problem of steady waves on water of finite depth is considered without assumptions about periodicity and symmetry of waves. A new form of Bemoulli's equation is derived, and it involves a new bifurcation parameter which is the product of the Froude number mu and the rate of flow omega. The main result obtained from this equation is the absence of waves, having sufficiently small amplitude, provided vertical bar mu omega vertical bar > 1.