Improving laser-induced breakdown spectroscopy regression models via transfer learning

被引:12
作者
Kepes, Erik [1 ,2 ]
Vrabel, Jakub [1 ]
Porizka, Pavel [1 ,2 ]
Kaiser, Jozef [1 ,2 ]
机构
[1] Brno Univ Technol, Cent European Inst Technol, Purkynova 656-123, CZ-61200 Brno, Czech Republic
[2] Brno Univ Technol, Fac Mech Engn, Inst Phys Engn, Tech 2, CZ-61669 Brno, Czech Republic
关键词
SUPPORT VECTOR MACHINES; CALIBRATION TRANSFER; CHEMCAM INSTRUMENT; NEURAL-NETWORKS; CCD DETECTORS; ALLOY-STEEL; LIBS; SAMPLE; TEMPERATURE; SCIENCE;
D O I
10.1039/d2ja00180b
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Laser-induced breakdown spectroscopy (LIBS) is a well-established analytical tool with relevance in extra-terrestrial exploration. Despite considerable efforts towards the development of calibration-free LIBS approaches, these are currently outperformed by calibration-based approaches to semi-quantitative LIBS analyses. However, the construction of robust calibration models often requires large calibration datasets owing to the extensive matrix effects plaguing the LIBS performance. Moreover, LIBS data are sensitive to changes in the apparatus. Hence, a calibration model constructed for one LIBS system is seldom applicable to a distinct LIBS system. A notable example are the LIBS instruments included in the currently active Mars Rovers' analytical suites, the ChemCam and SuperCam LIBS instruments; while the two instruments exhibit relatively small differences, they required the collection of two separate calibration datasets. Currently, these two datasets are used exclusively for the system they were collected for. In this work, we demonstrate that calibration models constructed for the SuperCam instrument can be improved using data obtained with the ChemCam instrument. Namely, we take advantage of the partial overlap between the targets used to collect the two calibration datasets. Using this overlap, we approximate the function transforming ChemCam spectra into their SuperCam equivalent. Subsequently, the transformed spectra are used to extend the training data available for the regression model constructed for the SuperCam instrument. The proposed approach considerably improves the performance of convolutional neural network regression models.
引用
收藏
页码:1883 / 1893
页数:11
相关论文
共 85 条
[1]   Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy [J].
Anderson, Ryan B. ;
Forni, Olivier ;
Cousin, Agnes ;
Wiens, Roger C. ;
Clegg, Samuel M. ;
Frydenvang, Jens ;
Gabriel, Travis S. J. ;
Ollila, Ann ;
Schroder, Susanne ;
Beyssac, Olivier ;
Gibbons, Erin ;
Vogt, David S. ;
Clave, Elise ;
Manrique, Jose-Antonio ;
Legett, Carey ;
Pilleri, Paolo ;
Newell, Raymond T. ;
Sarrao, Joseph ;
Maurice, Sylvestre ;
Arana, Gorka ;
Benzerara, Karim ;
Bernardi, Pernelle ;
Bernard, Sylvain ;
Bousquet, Bruno ;
Brown, Adrian J. ;
Alvarez-Llamas, Cesar ;
Chide, Baptiste ;
Cloutis, Edward ;
Comellas, Jade ;
Connell, Stephanie ;
Dehouck, Erwin ;
Delapp, Dorothea M. ;
Essunfeld, Ari ;
Fabre, Cecile ;
Fouchet, Thierry ;
Garcia-Florentino, Cristina ;
Garcia-Gomez, Laura ;
Gasda, Patrick ;
Gasnault, Olivier ;
Hausrath, Elisabeth M. ;
Lanza, Nina L. ;
Laserna, Javier ;
Lasue, Jeremie ;
Lopez, Guillermo ;
Manuel Madariaga, Juan ;
Mandon, Lucia ;
Mangold, Nicolas ;
Meslin, Pierre-Yves ;
Nelson, Anthony E. ;
Newsom, Horton .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2022, 188
[2]   Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models [J].
Anderson, Ryan B. ;
Clegg, Samuel M. ;
Frydenvang, Jens ;
Wiens, Roger C. ;
McLennan, Scott ;
Morris, Richard V. ;
Ehlmann, Bethany ;
Dyar, M. Darby .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2017, 129 :49-57
[3]   Laser Induced Breakdown Spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals - A review of applications and analytical performance [J].
Bengtson, A. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2017, 134 :123-132
[4]  
Bishop C., 2006, Pattern Recognition and Machine Learning
[5]   Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review [J].
Botto, Asia ;
Campanella, Beatrice ;
Legnaioli, Stefano ;
Lezzerini, Marco ;
Lorenzetti, Giulia ;
Pagnotta, Stefano ;
Poggialini, Francesco ;
Palleschi, Vincenzo .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2019, 34 (01) :81-103
[6]   Predicting pregnancy status from mid-infrared spectroscopy in dairy cow milk using deep learning [J].
Brand, W. ;
Wells, A. T. ;
Smith, S. L. ;
Denholm, S. J. ;
Wall, E. ;
Coffey, M. P. .
JOURNAL OF DAIRY SCIENCE, 2021, 104 (04) :4980-4990
[7]   Laser-induced breakdown spectra of rock powders at variable ablation and collection angles under Mars-analog conditions [J].
Breves, E. A. ;
Lepore, K. ;
Dyar, M. D. ;
Bender, S. C. ;
Tokar, R. L. ;
Boucher, T. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2017, 137 :46-58
[8]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[9]   Quantitative analysis modeling for the ChemCam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network [J].
Cao, Xueqiang ;
Zhang, Li ;
Wu, Zhongchen ;
Ling, Zongcheng ;
Li, Jialun ;
Guo, Kaichen .
PLASMA SCIENCE & TECHNOLOGY, 2020, 22 (11)
[10]   Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy [J].
Carranza, JE ;
Gibb, E ;
Smith, BW ;
Hahn, DW ;
Winefordner, JD .
APPLIED OPTICS, 2003, 42 (30) :6016-6021