Electron microscopy of nanoparticle superlattice formation at a solid-liquid interface in nonpolar liquids

被引:20
作者
Cepeda-Perez, E. [1 ,4 ]
Doblas, D. [1 ,5 ]
Kraus, T. [1 ,2 ]
de Jonge, N. [1 ,3 ]
机构
[1] INM Leibniz Inst New Mat, Saarbrucken, Germany
[2] Saarland Univ, Colloid & Interface Chem, Saarbrucken, Germany
[3] Saarland Univ, Dept Phys, Saarbrucken, Germany
[4] SPECS Surface Nano Anal, Berlin, Germany
[5] European XFEL, Schenefeld, Germany
来源
SCIENCE ADVANCES | 2020年 / 6卷 / 20期
关键词
NANOCRYSTAL SUPERLATTICES; RESOLUTION; PHASE;
D O I
10.1126/sciadv.aba1404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanoparticle superlattice films form at the solid-liquid interface and are important for mesoscale materials, but are notoriously difficult to analyze before they are fully dried. Here, the early stages of nanoparticle assembly were studied at solid-liquid interfaces using liquid-phase electron microscopy. Oleylamine-stabilized gold nanoparticles spontaneously formed thin layers on a silicon nitride (SiN) membrane window of the liquid enclosure. Dense packings of hexagonal symmetry were obtained for the first monolayer independent of the nonpolar solvent type. The second layer, however, exhibited geometries ranging from dense packing in a hexagonal honeycomb structure to quasi-crystalline particle arrangements depending on the dielectric constant of the liquid. The complex structures formed by the weaker interactions in the second particle layer were preserved, while the surface remained immersed in liquid. Fine-tuning the properties of the involved materials can thus be used to control the three-dimensional geometry of a superlattice including quasi-crystals.
引用
收藏
页数:5
相关论文
共 37 条
[1]   Quasicrystals as cluster aggregates [J].
Abe, E ;
Yan, YF ;
Pennycook, SJ .
NATURE MATERIALS, 2004, 3 (11) :759-767
[2]   Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA [J].
Auyeung, Evelyn ;
Morris, William ;
Mondloch, Joseph E. ;
Hupp, Joseph T. ;
Farha, Omar K. ;
Mirkin, Chad A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (04) :1658-1662
[3]   Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials [J].
Boles, Michael A. ;
Engel, Michael ;
Talapin, Dmitri V. .
CHEMICAL REVIEWS, 2016, 116 (18) :11220-11289
[4]   Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling [J].
Chen, Chi-Fan ;
Tzeng, Shien-Der ;
Chen, Hung-Ying ;
Lin, Kuan-Jiuh ;
Gwo, Shangjr .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (03) :824-+
[5]   Reversible tuning of silver quantum dot monolayers through the metal-insulator transition [J].
Collier, CP ;
Saykally, RJ ;
Shiang, JJ ;
Henrichs, SE ;
Heath, JR .
SCIENCE, 1997, 277 (5334) :1978-1981
[6]   GISAXS and GIWAXS study on self-assembling processes of nanoparticle based superlattices [J].
Corricelli, M. ;
Altamura, D. ;
Curri, M. L. ;
Sibillano, T. ;
Siliqi, D. ;
Mazzone, A. ;
Depalo, N. ;
Fanizza, E. ;
Zanchet, D. ;
Giannini, C. ;
Striccoli, M. .
CRYSTENGCOMM, 2014, 16 (40) :9482-9492
[7]   Resolution and aberration correction in liquid cell transmission electron microscopy [J].
de Jonge, Niels ;
Houben, Lothar ;
Dunin-Borkowski, Rafal E. ;
Ross, Frances M. .
NATURE REVIEWS MATERIALS, 2019, 4 (01) :61-78
[8]   Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers [J].
de Jonge, Niels .
ULTRAMICROSCOPY, 2018, 187 :113-125
[9]   Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface [J].
Dong, Angang ;
Chen, Jun ;
Vora, Patrick M. ;
Kikkawa, James M. ;
Murray, Christopher B. .
NATURE, 2010, 466 (7305) :474-477
[10]  
Dotera T, 2017, NAT MATER, V16, P987, DOI [10.1038/nmat4963, 10.1038/NMAT4963]