Legendre Curves on Generalized Paracontact Metric Manifolds

被引:5
作者
Bejan, Cornelia-Livia [1 ,2 ]
Eken Meric, Semsi [3 ]
Kilic, Erol [4 ]
机构
[1] Gh Asachi Tech Univ, Dept Math, Corp A, Bd Carol 1,11, Iasi 700506, Romania
[2] Univ Alexandru Ioan Cuza, Seminarul Matemat, Bd Carol 1,11, Iasi 700506, Romania
[3] Mersin Univ, Dept Math, TR-33343 Mersin, Turkey
[4] Inonu Univ, Dept Math, TR-44280 Malatya, Turkey
关键词
Paracontact structures on manifolds; Linear connection; Geodesics; Planar curve; Harmonic map;
D O I
10.1007/s40840-017-0475-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two different notions of almost paracontact structures (which are compatible or anti-compatible with the metric), well known in the literature, are unified and generalized here. Several formulas of paraholomorphic maps are established, and a result of Lichnerowicz type is obtained. The connection transformations which have the same system of paracontact-planar Legendre curves are characterized. Conformal changes of metrics which preserve geodesics (resp. paracontact-planar Legendre curves) are studied.
引用
收藏
页码:185 / 199
页数:15
相关论文
共 21 条
  • [1] Hypersurfaces of an Almost r-Paracontact Riemannian Manifold with a Semi-Symmetric Non-Metric Connection
    Ahmad, Mobin
    Ozgur, Cihan
    [J]. RESULTS IN MATHEMATICS, 2009, 55 (1-2) : 1 - 10
  • [2] [Anonymous], 1985, Tokyo J. Math.
  • [3] [Anonymous], 2010, INT J MATH MATH SCI, DOI [DOI 10.1155/2010/846195, 10.1155/2010/846195]
  • [4] ON LEGENDRE CURVES IN CONTACT 3-MANIFOLDS
    BAIKOUSSIS, C
    BLAIR, DE
    [J]. GEOMETRIAE DEDICATA, 1994, 49 (02) : 135 - 142
  • [5] Bejan C. L., 1996, NEW DEV DIFFERENTIAL, P67
  • [6] Bejan C. L, 1989, DIFF GEOM ITS APPL P, P23
  • [7] Bejan CL, 2014, ANN GLOB ANAL GEOM, V46, P117, DOI 10.1007/s10455-014-9414-4
  • [8] Cruceanu V, 1996, ROCKY MT J MATH, V26, P83, DOI 10.1216/rmjm/1181072105
  • [9] Doan S, 2014, J MATH SYST SCI, V4, P285
  • [10] Druta-Romaniuc SL, 2012, TAIWAN J MATH, V16, P497