Enhanced cycle stability of iron(II, III) oxide nanoparticles encapsulated with nitrogen-doped carbon and graphene frameworks for lithium battery anodes

被引:29
作者
De Pham-Cong [1 ]
Kim, Su Jae [1 ]
Jeong, Se Young [1 ]
Kim, Jong-Pil [2 ]
Kim, Hyun Gyu [2 ]
Braun, Paul V. [3 ]
Cho, Chae-Ryong [1 ,4 ]
机构
[1] Pusan Natl Univ, Coll Nanosci & Nanotechnol, Busan 46241, South Korea
[2] Korea Basic Sci Inst, Busan Ctr, Busan 46742, South Korea
[3] Univ Illinois, Frederick Seitz Mat Res Lab, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[4] Pusan Natl Univ, Dept Nanoenergy Engn, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Nitrogen-doped carbon; Graphene oxide; Iron oxide; Nanoparticles; Cycle stability; LI-ION BATTERIES; HIGH-PERFORMANCE ANODE; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; HOLLOW NANOFIBERS; ENERGY-STORAGE; FE3O4; COMPOSITES; CAPACITY; NANOSTRUCTURES;
D O I
10.1016/j.carbon.2017.12.073
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped carbon-coated and graphene oxide-wrapped Fe3O4 nanoparticles were prepared using the electrostatic force between polyethyleneimine-functionalized Fe3O4 nanoparticles and graphene oxide layers, followed by annealing in an N-2 atmosphere (Fe3O4@NCG). The electrochemical performance of Fe3O4@NCG was superior to that of graphene oxide-or reduced graphene oxide-wrapped Fe3O4 nanoparticles and carbon-coated Fe3O4 nanoparticles. Fe3O4@NCG exhibited stable specific capacity of similar to 895 mAh g(-1) after 350 cycles over the voltage range 0.001-3.0 V vs. Li/Li+. The superior performance of Fe3O4@NCG was attributed to the presence of a nitrogen-doped carbon layer and networks of reduced graphene oxide. The chemical route-derived Fe3O4@NCG may be a promising anode material for high-performance lithium-ion batteries. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:621 / 630
页数:10
相关论文
共 54 条
[41]   Robust 3D nanowebs assembled from interconnected and sandwich-like C@Fe3O4@C coaxial nanocables for enhanced Li-ion storage [J].
Wang, Yan ;
Qu, Qunting ;
Han, Yuyao ;
Gao, Tian ;
Shao, Jie ;
Zuo, Zhichen ;
Liu, Weijie ;
Shi, Qiang ;
Zheng, Honghe .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (26) :10314-10320
[42]   One-Pot Magnetic Field Induced Formation of Fe3O4/C Composite Microrods with Enhanced Lithium Storage Capability [J].
Wang, Yanrong ;
Zhang, Lei ;
Gao, Xuehui ;
Mao, Liyuan ;
Hu, Yong ;
Lou, Xiong Wen .
SMALL, 2014, 10 (14) :2815-2819
[43]   One-pot solvothermal synthesis of Fe3O4-PEI composite and its further modification with Au nanoparticles [J].
Wang, Yuanfeng ;
Xu, Feng ;
Zhang, Lei ;
Wei, Xinlin .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (01)
[44]  
White H S, 2001, ELECTROCHEMICAL METH
[45]   Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries [J].
Wu, Hao Bin ;
Chen, Jun Song ;
Hng, Huey Hoon ;
Lou, Xiong Wen .
NANOSCALE, 2012, 4 (08) :2526-2542
[46]   3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Eletrocatalysts for the Oxygen Reduction Reaction [J].
Wu, Zhong-Shuai ;
Yang, Shubin ;
Sun, Yi ;
Parvez, Khaled ;
Feng, Xinliang ;
Muellen, Klaus .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (22) :9082-9085
[47]   Graphene/metal oxide composite electrode materials for energy storage [J].
Wu, Zhong-Shuai ;
Zhou, Guangmin ;
Yin, Li-Chang ;
Ren, Wencai ;
Li, Feng ;
Cheng, Hui-Ming .
NANO ENERGY, 2012, 1 (01) :107-131
[48]   A chemical composition evolution for the shape-controlled synthesis and energy storage applicability of Fe3O4-C nanostructures [J].
Xu, Fenfen ;
Kang, Wenpei ;
Wang, Xinxin ;
Liu, Rui ;
Zhao, Chenhao ;
Shen, Qiang .
CRYSTENGCOMM, 2013, 15 (22) :4431-4437
[49]   Monodisperse Fe3O4 and γ-Fe2O3 Magnetic Mesoporous Microspheres as Anode Materials for Lithium-Ion Batteries [J].
Xu, Jing-San ;
Zhu, Ying-Jie .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) :4752-4757
[50]   Research Development on Sodium-Ion Batteries [J].
Yabuuchi, Naoaki ;
Kubota, Kei ;
Dahbi, Mouad ;
Komaba, Shinichi .
CHEMICAL REVIEWS, 2014, 114 (23) :11636-11682