Tuning Active Species in N-Doped Carbon with Fe/Fe3C Nanoparticles for Efficient Oxygen Reduction Reaction

被引:14
|
作者
Luo, Li [1 ]
Xu, Yan [1 ]
Wang, Dongsheng [1 ]
Feng, Wenhui [2 ]
Qiu, Xiaoqing [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Changsha Univ, Hunan Prov Key Lab Appl Environm Photocatalysis, Changsha 410022, Peoples R China
基金
中国国家自然科学基金;
关键词
BIFUNCTIONAL ELECTROCATALYSTS; ACIDIC ORR; FE; POLYDOPAMINE; PERFORMANCE; NANOFIBERS; CATALYSTS; NANOMATERIALS; NANOSHEETS; CO;
D O I
10.1021/acs.inorgchem.1c03573
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Transition metal-nitrogen-carbon (M-N-C) catalysts (M = Fe, Co, etc.) are the most promising substituents of Pt-based catalysts for oxygen reduction reaction (ORR). However, the insufficient active species in catalysts inevitably hamper their widespread applications. Herein, we report the regulation of the active species in the catalysts of multicomponent N-doped carbon with Fe/Fe3C nanoparticles by polydopamine (PDA) coating. It is found that the PDA is conducive to increasing the pyridinic, graphitic, and total N content in the carbon matrix. Benefiting from the chelating effects, the PDA further profits the formation of Fe-Nx structures and the implantation of Fe/Fe3C nanoparticles in the matrix during the pyrolysis. As expected, the resultant catalysts exhibit over 15 times mass activity toward ORR than nitrogen-doped carbon. Moreover, our developed catalysts show long-term stability as well as high methanol tolerance, which is superior to that of the commercial Pt/C electrode. This work provides a new avenue to explore a wider range of high-performance ORR electrocatalysts by regulating the active species.
引用
收藏
页码:3166 / 3175
页数:10
相关论文
共 50 条
  • [21] Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction
    Hu, Yezhou
    Lu, Yun
    Zhao, Xueru
    Shen, Tao
    Zhao, Tonghui
    Gong, Mingxing
    Chen, Ke
    Lai, Chenglong
    Zhang, Jian
    Xin, Huolin L.
    Wang, Deli
    NANO RESEARCH, 2020, 13 (09) : 2365 - 2370
  • [22] A facile template approach for the synthesis of mesoporous Fe3C/Fe-N-doped carbon catalysts for efficient and durable oxygen reduction reaction
    Li, Shuai
    Li, Bo
    Ma, Liang
    Yang, Jia
    Xu, Hangxun
    CHINESE CHEMICAL LETTERS, 2017, 28 (11) : 2159 - 2163
  • [23] MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction
    Guo, Dakai
    Han, Sancan
    Wang, Jiacheng
    Zhu, Yufang
    APPLIED SURFACE SCIENCE, 2018, 434 : 1266 - 1273
  • [24] Co-Fe alloy nanoparticles and Fe3C nanocrystals on N-doped biomass-derived porous carbon for superior electrocatalytic oxygen reduction
    Gao, Zhuo
    Zhang, Pianpian
    Jiang, Rong
    Wang, Hailong
    Zhi, Qianjun
    Yu, Baoqiu
    Jin, Yucheng
    Sun, Tingting
    Jiang, Jianzhuang
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 307
  • [25] Porous Core-Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction
    Ren, Guangyuan
    Lu, Xianyong
    Li, Yunan
    Zhu, Ying
    Dai, Liming
    Jiang, Lei
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (06) : 4118 - 4125
  • [26] Electrospun N-doped carbon nanofibers decorated with Fe3C nanoparticles as highly active oxygen reduction electrocatalysts for rechargeable Zn-air batteries
    Zou, Shanbao
    Li, Jiajie
    Wu, Xiaoqian
    Lu, Yue
    Liu, Xundao
    Dong, Dehua
    CHEMICAL PHYSICS LETTERS, 2021, 778 (778)
  • [27] Scalable synthesis of Fe3N nanoparticles within N-doped carbon frameworks as efficient electrocatalysts for oxygen reduction reaction
    Xue, Nan
    Liu, Jing
    Wang, Pengyuan
    Wang, Chunyan
    Li, Sen
    Zhu, Hui
    Yin, Jiao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 580 : 460 - 469
  • [28] N-doped and Fe-, N-codoped carbon: tuning of porous structures for highly efficient oxygen reduction reaction
    Lu Xiao
    Qianqian Yang
    Min Jie Wang
    Zhan Xin Mao
    Jing Li
    Zidong Wei
    Journal of Materials Science, 2018, 53 : 15246 - 15256
  • [29] N-doped and Fe-, N-codoped carbon: tuning of porous structures for highly efficient oxygen reduction reaction
    Xiao, Lu
    Yang, Qiandian
    Wang, Min Jie
    Mao, Zhan Xin
    Li, Jing
    Wei, Zidong
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (21) : 15246 - 15256
  • [30] Fe3Pt intermetallic nanoparticles anchored on N-doped mesoporous carbon for the highly efficient oxygen reduction reaction
    Chen, Danke
    Li, Zhuoyi
    Zhou, Yu
    Ma, Xu
    Lin, Hanqing
    Ying, Wen
    Peng, Xinsheng
    CHEMICAL COMMUNICATIONS, 2020, 56 (36) : 4898 - 4901