Algebraic analysis of stability and bifurcation for nonlinear flight dynamics

被引:2
作者
Wang, D. [1 ]
机构
[1] Univ Paris 06, CNRS, Lab Informat Paris 6, Paris, France
关键词
QUANTIFIER ELIMINATION; MANEUVERS; AIRCRAFT;
D O I
10.1017/S0001924000005868
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This note presents an application of algebraic methods to derive exact conditions for,certain nonlinear flight dynamical systems to exhibit stability and bifurcation. The roll-coupling flight model is taken as an example to show the feasibility of algebraic analysis. Some of the previous stability and bifurcation results obtained using numerical analysis for this model are confirmed.
引用
收藏
页码:345 / 349
页数:5
相关论文
共 18 条
  • [1] [Anonymous], 1982, ORDINARY DIFFERENTIA
  • [2] [Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
  • [3] Buchberger B., 1985, Multidimensional Systems Theory-Progress, Directions and Open Problems in Multidimensional Systems, P184
  • [4] PARTIAL CYLINDRICAL ALGEBRAIC DECOMPOSITION FOR QUANTIFIER ELIMINATION
    COLLINS, GE
    HONG, H
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1991, 12 (03) : 299 - 328
  • [5] El Kahoui M, 2000, J SYMB COMPUT, V30, P161, DOI [10.1006/jsco.1000.0353, 10.1006/jsco.1999.0353]
  • [6] Computational framework for investigation of aircraft nonlinear dynamics
    Goman, M. G.
    Khramtsovsky, A. V.
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2008, 39 (03) : 167 - 177
  • [7] Application of bifurcation methods to nonlinear flight dynamics problems
    Goman, MG
    Zagainov, GI
    Khramtsovsky, AV
    [J]. PROGRESS IN AEROSPACE SCIENCES, 1997, 33 (9-10) : 539 - 586
  • [8] GOMAN MG, 1997, AIAA ATM FLIGHT MECH, P662
  • [9] Solving parametric polynomial systems
    Lazard, Daniel
    Rouillier, Fabrice
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (06) : 636 - 667
  • [10] Algebraic Approaches to Stability Analysis of Biological Systems
    Niu, Wei
    Wang, Dongming
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2008, 1 (03) : 507 - 539