Quasi-long-range order in trapped two-dimensional Bose gases

被引:10
作者
Boettcher, Igor [1 ]
Holzmann, Markus [2 ,3 ]
机构
[1] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[2] Univ Grenoble Alpes, CNRS, LPMMC, UMR 5493, Boite Postale 166, F-38042 Grenoble, France
[3] Inst Laue Langevin, Boite Postale 156, F-38042 Grenoble, France
基金
欧洲研究理事会;
关键词
MAGNETIC PHASE-TRANSITION; CONTINUOUS SYMMETRY GROUP; COLLECTIVE EXCITATIONS; SYSTEMS; DESTRUCTION; FILMS;
D O I
10.1103/PhysRevA.94.011602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the fate of algebraic decay of correlations in a harmonically trapped two-dimensional degenerate Bose gas. The analysis is inspired by recent experiments on ultracold atoms where power-law correlations have been observed despite the presence of the external potential. We generalize the spin wave description of phase fluctuations to the trapped case and obtain an analytical expression for the one-body density matrix within this approximation. We show that algebraic decay of the central correlation function persists to lengths of about 20% of the Thomas-Fermi radius. We establish that the trap-averaged correlation function decays algebraically with a strictly larger exponent weakly changing with trap size and find indications that the recently observed enhanced scaling exponents receive significant contributions from the normal component of the gas. We discuss radial and angular correlations and propose a local correlation approximation which captures the correlations very well. Our analysis goes beyond the usual local density approximation and the developed summation techniques constitute a powerful tool to investigate correlations in inhomogeneous systems.
引用
收藏
页数:5
相关论文
共 50 条
[41]   One-body correlations and momentum distributions of trapped one-dimensional Bose gases at finite temperature [J].
Takacs, Attila ;
Zhang, Yicheng ;
Calabrese, Pasquale ;
Dubail, Jerome ;
Rigol, Marcos ;
Scopa, Stefano .
PHYSICAL REVIEW A, 2025, 111 (03)
[42]   Magnetic Anisotropy of a Quasi Two-Dimensional Canted Antiferromagnet [J].
Lim, Zhi Shiuh ;
Li, Changjian ;
Chi, Xiao ;
Omar, Ganesh Ji ;
Ma, Haijiao Harsan ;
Huang, Zhen ;
Zeng, Shengwei ;
Yang, Ping ;
Venkatesan, Thirumalai ;
Rusydi, Andrivo ;
Pennycook, Stephen John ;
Ariando, Ariando .
NANO LETTERS, 2020, 20 (03) :1890-1895
[43]   APPLICATION OF GEOMETROTHERMODYNAMICS TO THE TWO-DIMENSIONAL SYSTEMS: IDEAL BOSE-GAS AND SYSTEM WITH STRONG INTERACTION [J].
Zazulin, D. M. ;
Kemelzhanova, S. E. ;
Satyshev, I ;
Ormantaev, O. .
NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2020, 4 (332) :68-76
[44]   Ground-State Properties of a Dilute Two-Dimensional Bose Gas [J].
Pastukhov, Volodymyr .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2019, 194 (3-4) :197-208
[45]   Loading and compression of a single two-dimensional Bose gas in an optical accordion [J].
Ville, J. L. ;
Bienaime, T. ;
Saint-Jalm, R. ;
Corman, L. ;
Aidelsburger, M. ;
Chomaz, L. ;
Kleinlein, K. ;
Perconte, D. ;
Nascimbene, S. ;
Dalibard, J. ;
Beugnon, J. .
PHYSICAL REVIEW A, 2017, 95 (01)
[46]   Pair formation temperature in jelliumlike two-dimensional electron gases [J].
Nagy, I. ;
Zabala, N. ;
Echenique, P. M. .
PHYSICAL REVIEW B, 2009, 80 (09)
[47]   Phase-Separation Kinetics in the Two-Dimensional Long-Range Ising Model br [J].
Mueller, Fabio ;
Christiansen, Henrik ;
Janke, Wolfhard .
PHYSICAL REVIEW LETTERS, 2022, 129 (24)
[48]   Quantum Quench and Prethermalization Dynamics in a Two-Dimensional Fermi Gas with Long-Range Interactions [J].
Nessi, N. ;
Iucci, A. ;
Cazalilla, M. A. .
PHYSICAL REVIEW LETTERS, 2014, 113 (21)
[49]   Monte Carlo simulation of the effects of higher-order anisotropy on the spin reorientation transition in the two-dimensional Heisenberg model with long-range interactions [J].
Ambrose, M. C. ;
Stamps, R. L. .
PHYSICAL REVIEW B, 2013, 87 (18)
[50]   Phase Diagram of the Commensurate Two-Dimensional Disordered Bose-Hubbard Model [J].
Soeyler, S. G. ;
Kiselev, M. ;
Prokof'ev, N. V. ;
Svistunov, B. V. .
PHYSICAL REVIEW LETTERS, 2011, 107 (18)