Support vector machines in urban water demand forecasting using phase space reconstruction
被引:20
作者:
Shabani, Sina
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Okanagan Sch Engn, Vancouver, BC, CanadaUniv British Columbia, Okanagan Sch Engn, Vancouver, BC, Canada
Shabani, Sina
[1
]
Yousefi, Peyman
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Okanagan Sch Engn, Vancouver, BC, CanadaUniv British Columbia, Okanagan Sch Engn, Vancouver, BC, Canada
Yousefi, Peyman
[1
]
Naser, Gholamreza
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Okanagan Sch Engn, Vancouver, BC, CanadaUniv British Columbia, Okanagan Sch Engn, Vancouver, BC, Canada
Naser, Gholamreza
[1
]
机构:
[1] Univ British Columbia, Okanagan Sch Engn, Vancouver, BC, Canada
来源:
XVIII INTERNATIONAL CONFERENCE ON WATER DISTRIBUTION SYSTEMS, WDSA2016
|
2017年
/
186卷
基金:
加拿大自然科学与工程研究理事会;
关键词:
Water demand forecasting;
phase space reconstruction;
average mutual information;
lag time;
support vector machine;
D O I:
10.1016/j.proeng.2017.03.267
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
High complexity of water distribution systems' (WDS) dynamics has convinced researchers to look for more sophisticated statistical approaches in urban water demand forecasting. Given the huge threat to major water reserves and ongoing draughts, water authorities are concerned with long term analysis of water demand to deal with uncertain future of this dynamic infrastructure. Researchers have tried a wide range of modelling techniques to propose an accurate model. However, applications of machine learning techniques are yet to be explored in detail. This research proposes a support vector machine (SVM) model, using polynomial kernel function to forecast monthly water demand of City of Kelowna (CKD), Canada. The prime objective of this research is to assess the use of phase space reconstruction prior to design of models' input variables combinations. Results of this study proved optimum lag time of the input variables can significantly improve the performance of SVM models. (C) 2016 The Authors. Published by Elsevier Ltd.
机构:
King Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi Arabia
Mohandes, MA
Halawani, TO
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi Arabia
Halawani, TO
Rehman, S
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi Arabia
Rehman, S
Hussain, AA
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi Arabia
机构:
King Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi Arabia
Mohandes, MA
Halawani, TO
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi Arabia
Halawani, TO
Rehman, S
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi Arabia
Rehman, S
Hussain, AA
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi Arabia