Stress Tests of Transport Models Using FACETS Code

被引:2
作者
Pankin, A. Y. [1 ]
Callen, J. D. [2 ]
Cary, J. R. [1 ]
Groebner, R. J. [3 ]
Hakim, A. [1 ]
Kruger, S. E. [1 ]
Pletzer, A. [1 ]
Shasharina, S. [1 ]
Vadlamani, S. [1 ]
Cohen, R. H. [4 ]
Kritz, A. H. [5 ]
Rognlien, T. D. [4 ]
Rafiq, T. [5 ]
机构
[1] Tech X Corp, Boulder, CO 80303 USA
[2] Univ Wisconsin, Madison, WI 53706 USA
[3] Gen Atom, San Diego, CA 92121 USA
[4] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[5] Lehigh Univ, Bethlehem, PA 18015 USA
来源
IFP-CNR-CHALMERS WORKSHOP ON NONLINEAR PHENOMENA IN FUSION PLASMAS | 2011年 / 1392卷
关键词
D O I
10.1063/1.3647237
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The confinement of H-mode plasmas strongly depends on the H-mode pedestal structure. The pedestal provides the boundary conditions for the hot core tokamak region and determines the stability properties of the plasma edge. The structure of H-mode pedestal depends on many factors such as heating of the plasma core, neutral fueling, recycling and density and thermal transport. It is important to elucidate the primary mechanisms that are responsible for the pedestal structure in order to optimize the tokamak performance, and avoid disruptions and large scale instabilities such as neoclassical tearing mode (NTM) and edge localized modes (ELMs). In this study, the FACETS code is used to test several models for anomalous, paleoclassical and neoclassical transport in the plasma edge of tokamaks. The FACETS code is a new whole-device integrated modeling code that advances plasma profiles in time using a selection of transport models and models for heating and particle sources. The simulation results are compared with experimental measurements from the DIII-D tokamak.
引用
收藏
页数:6
相关论文
共 11 条
[1]   Analysis of pedestal plasma transport [J].
Callen, J. D. ;
Groebner, R. J. ;
Osborne, T. H. ;
Canik, J. M. ;
Owen, L. W. ;
Pankin, A. Y. ;
Rafiq, T. ;
Rognlien, T. D. ;
Stacey, W. M. .
NUCLEAR FUSION, 2010, 50 (06)
[2]   Toroidal flow and radial particle flux in tokamak plasmas [J].
Callen, J. D. ;
Cole, A. J. ;
Hegna, C. C. .
PHYSICS OF PLASMAS, 2009, 16 (08)
[3]   Paleoclassical transport in low-collisionality toroidal plasmas [J].
Callen, JD .
PHYSICS OF PLASMAS, 2005, 12 (09) :1-20
[4]   Paleoclassical electron heat transport [J].
Callen, JD .
NUCLEAR FUSION, 2005, 45 (09) :1120-1130
[5]   Progress towards a predictive model for pedestal height in DIII-D [J].
Groebner, R. J. ;
Leonard, A. W. ;
Snyder, P. B. ;
Osborne, T. H. ;
Maggi, C. F. ;
Fenstermacher, M. E. ;
Petty, C. C. ;
Owen, L. W. .
NUCLEAR FUSION, 2009, 49 (08)
[6]  
Pan'kin AY, 2011, PROBL ATOM SCI TECH, P8
[7]   Simulation of anomalous transport in tokamaks using the FACETS code [J].
Pankin, Alexei Y. ;
Pletzer, Alex ;
Vadlamani, Srinath ;
Cary, John R. ;
Hakim, Ammar ;
Kruger, Scott E. ;
Miah, Mahmood ;
Rognlien, Thomas D. ;
Shasharina, Svetlana ;
Bateman, Glenn ;
Kritz, Arnold H. ;
Rafiq, Tariq .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (01) :180-184
[8]   Simulation of electron thermal transport in H-mode discharges [J].
Rafiq, T. ;
Pankin, A. Y. ;
Bateman, G. ;
Kritz, A. H. ;
Halpern, F. D. .
PHYSICS OF PLASMAS, 2009, 16 (03)
[9]   Development and validation of a predictive model for the pedestal height [J].
Snyder, P. B. ;
Groebner, R. J. ;
Leonard, A. W. ;
Osborne, T. H. ;
Wilson, H. R. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[10]   Force balance and ion particle transport differences in high and low confinement tokamak edge pedestals [J].
Stacey, W. M. ;
Groebner, R. J. .
PHYSICS OF PLASMAS, 2010, 17 (11)