Conservation of the photon number in the generalized nonlinear Schrodinger equation in axially varying optical fibers

被引:10
作者
Vanvincq, O. [1 ]
Travers, J. C. [1 ]
Kudlinski, A. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Femtosecond Opt Grp, London SW7 2AZ, England
[2] Univ Lille 1, Lab PhLAM, IRCICA, F-59655 Villeneuve Dascq, France
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 06期
关键词
SELF-FREQUENCY SHIFT; EMERGING WAVE-GUIDES; FULL VECTORIAL MODEL; SUPERCONTINUUM GENERATION; PULSE-COMPRESSION; SOLITON; DISPERSION; PROPAGATION; DYNAMICS; TAPERS;
D O I
10.1103/PhysRevA.84.063820
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We reexamine the derivation of the generalized nonlinear Schrodinger equation in the case of nonaxially uniform optical fibers, taking into account the longitudinal and spectral evolutions of all pertinent linear parameters. Our theory leads to an improved form of this equation that highlights an additional term, which ensures the conservation of the total photon number in nonuniform optical fibers in the absence of attenuation. Numerical simulations confirm the validity of this theory in the context of a Raman-induced soliton self-frequency shift, emission of Cherenkov radiation, and a soliton blue shift.
引用
收藏
页数:7
相关论文
共 34 条
[1]   CHERENKOV RADIATION EMITTED BY SOLITONS IN OPTICAL FIBERS [J].
AKHMEDIEV, N ;
KARLSSON, M .
PHYSICAL REVIEW A, 1995, 51 (03) :2602-2607
[2]  
[Anonymous], 2007, NONLINEAR FIBER OPTI
[3]   THEORETICAL DESCRIPTION OF TRANSIENT STIMULATED RAMAN-SCATTERING IN OPTICAL FIBERS [J].
BLOW, KJ ;
WOOD, D .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (12) :2665-2673
[4]  
Boyd RW, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[5]   FEMTOSECOND SOLITON PROPAGATION IN FIBERS WITH SLOWLY DECREASING DISPERSION [J].
CHERNIKOV, SV ;
MAMYSHEV, PV .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (08) :1633-1641
[6]  
Dudley J. M., 2010, Supercontinuum Generation in Optical Fibers
[7]   Supercontinuum generation in photonic crystal fiber [J].
Dudley, John M. ;
Genty, Goery ;
Coen, Stephane .
REVIEWS OF MODERN PHYSICS, 2006, 78 (04) :1135-1184
[8]   Forward-backward equations for nonlinear propagation in axially invariant optical systems -: art. no. 016601 [J].
Ferrando, A ;
Zacarés, M ;
de Córdoba, PF ;
Binosi, D ;
Montero, A .
PHYSICAL REVIEW E, 2005, 71 (01)
[9]   NONLINEAR PROPAGATION OF ULTRASHORT PULSES IN OPTICAL FIBERS - TOTAL FIELD FORMULATION IN THE FREQUENCY-DOMAIN [J].
FRANCOIS, PL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (02) :276-293
[10]   Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides [J].
Genty, G. ;
Kinsler, P. ;
Kibler, B. ;
Dudley, J. M. .
OPTICS EXPRESS, 2007, 15 (09) :5382-5387