Growth imperfections in three-dimensional colloidal self-assembly

被引:63
作者
Teh, LK [1 ]
Tan, NK [1 ]
Wong, CC [1 ]
Li, S [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Engn, Singapore 639798, Singapore
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2005年 / 81卷 / 07期
关键词
D O I
10.1007/s00339-004-3095-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Self-assembled colloidal films produced from vertical deposition often show alternating bands of arrayed spheres and empty regions on the substrate as the solvent evaporates. We have identified three distinct growth zones, their relative extent being a function of colloidal concentration. We attribute the growth pattern to a 'stick-slip' motion of the meniscus growth front, a direct consequence of the dynamic balance of surface-tension forces and the convective transport of nanoparticles. Within these zones, the crystalline quality of the colloidal crystals is dependent on the wetting characteristics of the meniscus. These colloidal crystals also exhibit cracks of different morphologies within the different growth zones as a result of the drying process. We deduce that these macroscopic imperfections may be reduced by improving substrate wettability and reducing evaporation rate.
引用
收藏
页码:1399 / 1404
页数:6
相关论文
共 50 条
[31]   Templated Self-Assembly of Colloidal Nanocrystals into Three-Dimensional Mesoscopic Structures: A Perspective on Synthesis and Catalytic Prospects [J].
Papadas, Ioannis T. ;
Vamvasakis, Ioannis ;
Tamiolakis, Ioannis ;
Armatas, Gerasimos S. .
CHEMISTRY OF MATERIALS, 2016, 28 (09) :2886-2896
[32]   Self-assembly, buckling and density-invariant growth of three-dimensional vascular networks [J].
Kirkegaard, Julius B. ;
Nielsen, Bjarke F. ;
Trusina, Ala ;
Sneppen, Kim .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2019, 16 (159)
[33]   Three-dimensional liquid surfaces through nanoparticle self-assembly [J].
Tseng, Tzu-Chia ;
McGarrity, Erin S. ;
Kiel, Jonathan W. ;
Duxbury, Phillip M. ;
Mackay, Michael E. ;
Frischknecht, Amalie L. ;
Asokan, Subashini ;
Wong, Michael S. .
SOFT MATTER, 2010, 6 (07) :1533-1538
[34]   Erratum: Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Shawn M. Douglas ;
Hendrik Dietz ;
Tim Liedl ;
Björn Högberg ;
Franziska Graf ;
William M. Shih .
Nature, 2009, 459 :1154-1154
[35]   Thermodynamic theory of two-dimensional to three-dimensional growth transition in quantum dots self-assembly [J].
Li, Xinlei ;
Cao, Yuanyuan ;
Yang, Guowei .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (18) :4768-4772
[36]   Three-dimensional self-assembly of millimetre-scale components [J].
Terfort, A ;
Bowden, N ;
Whitesides, GM .
NATURE, 1997, 386 (6621) :162-164
[37]   Complex three-dimensional self-assembly in proxies for atmospheric aerosols [J].
C. Pfrang ;
K. Rastogi ;
E. R. Cabrera-Martinez ;
A. M. Seddon ;
C. Dicko ;
A. Labrador ;
T. S. Plivelic ;
N. Cowieson ;
A. M. Squires .
Nature Communications, 8
[38]   Supramolecular self-assembly of three-dimensional polyaniline and polypyrrole crystals [J].
Tao, Yulun ;
Li, Juchuan ;
Xie, Anjian ;
Li, Shikuo ;
Chen, Ping ;
Ni, Liping ;
Shen, Yuhua .
CHEMICAL COMMUNICATIONS, 2014, 50 (84) :12757-12760
[39]   An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale [J].
Blum, AS ;
Soto, CM ;
Wilson, CD ;
Brower, TL ;
Pollack, SK ;
Schull, TL ;
Chatterji, A ;
Lin, TW ;
Johnson, JE ;
Amsinck, C ;
Franzon, P ;
Shashidhar, R ;
Ratna, BR .
SMALL, 2005, 1 (07) :702-706
[40]   Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water [J].
Taylor, Lauren L. K. ;
Riddell, Imogen A. ;
Smulders, Maarten M. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) :1280-1307