The braided Ptolemy-Thompson group is asynchronously combable

被引:6
作者
Funar, Louis [1 ]
Kapoudjian, Christophe [2 ]
机构
[1] Univ Grenoble 1, Inst Fourier, UMR 5582, F-38402 St Martin Dheres, France
[2] Univ Toulouse 3, Lab Emile Picard, UMR 5580, F-31062 Toulouse 4, France
关键词
Mapping class groups; infinite surface; Thompson group; braid; MAPPING CLASS GROUP; GEOMETRY; FINITENESS; EXTENSION; ALGEBRA; STRAND;
D O I
10.4171/CMH/239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The braided Ptolemy-Thompson group T-star is an extension of the Thompson group T by the full braid group B-infinity on infinitely many strands and both of them can be viewed as mapping class groups of certain infinite planar surfaces. The main result of this article is that T-star (and in particular T) is asynchronously combable. The result is new already for the group T. The method of proof is inspired by Lee Mosher's proof of automaticity of mapping class groups.
引用
收藏
页码:707 / 768
页数:62
相关论文
共 28 条
  • [2] The dilogarithmic central extension of the Ptolemy-Thompson group via the Kashaev quantization
    Kim, Hyun Kyu
    ADVANCES IN MATHEMATICS, 2016, 293 : 529 - 588
  • [3] Divergence function of the braided Thompson group
    Kodama, Yuya
    KYOTO JOURNAL OF MATHEMATICS, 2023, 63 (02) : 435 - 470
  • [4] Braided Thompson groups with and without quasimorphisms
    Fournier-Facio, Francesco
    Lodha, Yash
    Zaremsky, Matthew C. B.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (03): : 1601 - 1622
  • [5] Geometric structures related to the braided Thompson groups
    Zaremsky, Matthew C. B.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (03) : 2591 - 2610
  • [6] Pure infinitely braided Thompson groups
    Cumplido, Maria
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (12) : 5125 - 5137
  • [7] Divergence Property of the Brown-Thompson Groups and Braided Thompson Groups
    Sheng, Xiaobing
    TRANSFORMATION GROUPS, 2025, 30 (01) : 413 - 446
  • [8] Metric Properties of Braided Thompson's Groups
    Burillo, Jose
    Cleary, Sean
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (02) : 605 - 615
  • [9] The braided Thompson's groups are of type F∞
    Bux, Kai-Uwe
    Fluch, Martin G.
    Marschler, Marco
    Witzel, Stefan
    Zaremsky, Matthew C. B.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 718 : 59 - 101
  • [10] A new family of infinitely braided Thompson's groups
    Aroca, Julio
    Cumplido, Maria
    JOURNAL OF ALGEBRA, 2022, 607 : 5 - 34