A Robust Framework for Covariance Classification in Heterogeneous Polarimetric SAR Images and Its Application to L-Band Data

被引:26
作者
Pallotta, Luca [1 ]
De Maio, Antonio [2 ]
Orlando, Danilo [3 ]
机构
[1] Univ Federico II, CNIT, I-80125 Naples, Italy
[2] Univ Naples Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, I-80125 Naples, Italy
[3] Univ Niccolo Cusano, Fac Engn, I-00166 Rome, Italy
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 01期
关键词
Polarimetric covariance matrix; polarimetric SAR (PoISAR); supervised/unsupervised classification; symmetry classification; MODEL ORDER SELECTION; LIKELIHOOD RATIO TEST; UNSUPERVISED CLASSIFICATION; RICE PADDIES; RADAR; SCATTERING; MATRIX; DECOMPOSITION; EXISTENCE; CLUTTER;
D O I
10.1109/TGRS.2018.2852559
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, an automatic classification approach for polarimetric covariance structure is derived and assessed. It extends the framework of Pallotta et al. "Detecting Covariance Symmetries in Polarimetric SAR Images" to the heterogeneous environment, where the pixels of the polarimetric image share the same covariance structure but different power levels. The Principle of Invariance is exploited to replace the original data with a suitable statistic whose distribution is independent of the scale factors. Then, the classification problem is formulated in terms of a multiple hypotheses test and solved by means of model order selection rules. The behavior of the newly devised classifiers is first assessed over simulated data also in comparison with the analogous counterparts for a homogeneous environment. Next, the classification performances are evaluated on real measured data corroborating the satisfactory results highlighted in the simulations.
引用
收藏
页码:104 / 119
页数:16
相关论文
共 62 条
[1]  
[Anonymous], 2009, P 2009 IEEE INT C IN
[2]   Characterization of L-Band MIMP SAR Data From Rice Paddies at Late Vegetative Stage [J].
Arii, Motofumi ;
Yamada, Hiroyoshi ;
Ohki, Masato .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (07) :3852-3860
[3]   Theoretical Characterization of X-Band Multiincidence Angle and Multipolarimetric SAR Data From Rice Paddies at Late Vegetative Stage [J].
Arii, Motofumi ;
Yamada, Hiroyoshi ;
Kobayashi, Tatsuharu ;
Kojima, Shoichiro ;
Umehara, Toshihiko ;
Komatsu, Tomomi ;
Nishimura, Takeshi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (05) :2706-2715
[4]   Adaptive Model-Based Decomposition of Polarimetric SAR Covariance Matrices [J].
Arii, Motofumi ;
van Zyl, Jakob J. ;
Kim, Yunjin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (03) :1104-1113
[5]   A General Characterization for Polarimetric Scattering From Vegetation Canopies [J].
Arii, Motofumi ;
van Zyl, Jakob J. ;
Kim, Yunjin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (09) :3349-3357
[6]   Capon-LS for model order selection of multicomponent interferometric SAR signals [J].
Bordoni, F ;
Gini, F ;
Verrazzani, L .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2004, 151 (05) :299-305
[7]  
Burnham K. P., 2002, MODEL SELECTION MULT, V2nd ed.
[8]  
CAMERON WL, 1990, RECORD OF THE IEEE 1990 INTERNATIONAL RADAR CONFERENCE, P549, DOI 10.1109/RADAR.1990.201088
[9]   Forcing Scale Invariance in Multipolarization SAR Change Detection [J].
Carotenuto, Vincenzo ;
De Maio, Antonio ;
Clemente, Carmine ;
Soraghan, John J. ;
Alfano, Giusi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01) :36-50
[10]   Invariant Rules for Multipolarization SAR Change Detection [J].
Carotenuto, Vincenzo ;
De Maio, Antonio ;
Clemente, Carmine ;
Soraghan, John J. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06) :3294-3311