Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight

被引:14
作者
Boscaggin, Alberto [1 ]
Feltrin, Guglielmo [2 ]
机构
[1] Univ Torino, Dept Math, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, Italy
关键词
Minkowski-curvature operator; Indefinite weight; Neumann problem; Positive solutions; Radial solutions; Topological degree; DIRICHLET PROBLEM; OPERATOR; EQUATION; SYSTEMS;
D O I
10.1016/j.na.2020.111807
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem {div (del u/root 1 - vertical bar del u vertical bar(2)) + lambda a(vertical bar x vertical bar u(p) = 0, in B, partial derivative(v)u = 0, on partial derivative B, where B is a ball centered at the origin, a(|x|) is a radial sign-changing function with integral(B) a(vertical bar x vertical bar) dx < 0, p > 1 and lambda > 0 is a large parameter. The proof is based on the Leray-Schauder degree theory and extends to a larger class of nonlinearities. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 19 条
[1]   Ground state solution for a problem with mean curvature operator in Minkowski space [J].
Azzollini, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :2086-2095
[2]   Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian [J].
Bereanu, C. ;
Mawhin, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :536-557
[3]   Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (04) :644-659
[4]   Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) :379-391
[5]  
Boscaggin A., ARXIV 1805 06659
[6]   POSITIVE RADIAL SOLUTIONS FOR THE MINKOWSKI-CURVATURE EQUATION WITH NEUMANN BOUNDARY CONDITIONS [J].
Boscaggin, Alberto ;
Colasuonno, Francesca ;
Noris, Benedetta .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07) :1921-1933
[7]   Pairs of nodal solutions for a Minkowski-curvature boundary value problem in a ball [J].
Boscaggin, Alberto ;
Garrione, Maurizio .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (02)
[8]   Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case [J].
Boscaggin, Alberto ;
Feltrin, Guglielmo ;
Zanolin, Fabio .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (03) :449-474
[9]   Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem [J].
Boscaggin, Alberto ;
Zanolin, Fabio .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (02) :451-478
[10]  
Coelho I, 2014, TOPOL METHOD NONL AN, V44, P23