Gap solitons in parity-time complex periodic optical lattices with the real part of superlattices

被引:115
作者
Zhu, Xing [1 ]
Wang, Hong [1 ,2 ]
Zheng, Li-Xian [1 ]
Li, Huagang [3 ]
He, Ying-Ji [4 ]
机构
[1] S China Univ Technol, Guangdong Engn Res Ctr Semicond Lighting, Sch Sci, Guangzhou 510640, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Guangdong Univ Educ, Dept Phys, Guangzhou 510303, Guangdong, Peoples R China
[4] Guangdong Polytech Normal Univ, Sch Elect & Informat, Guangzhou 510665, Guangdong, Peoples R China
关键词
ITERATION METHODS; SOLITARY WAVES; POTENTIALS; SYMMETRY; SPECTRA;
D O I
10.1364/OL.36.002680
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report the existence and stability of gap solitons in parity-time (PT) complex periodic optical lattices with the real part of superlattices. These solitons can stably exist in the semi-infinite gap. We have studied the effects of different relative strengths of the superlattices and different amplitudes of the imaginary part on soliton propagation. It was found that the relative strength of the superlattices and the amplitude of the imaginary part significantly affect the PT symmetry and the stability of solitons in the PT complex periodic optical lattices. (C) 2011 Optical Society of America
引用
收藏
页码:2680 / 2682
页数:3
相关论文
共 18 条
[1]   Spectral renormalization method for computing self-localized solutions to nonlinear systems [J].
Ablowitz, MJ ;
Musslimani, ZH .
OPTICS LETTERS, 2005, 30 (16) :2140-2142
[2]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[3]   Faster than hermitian quantum mechanics [J].
Bender, Carl M. ;
Brody, Dorje C. ;
Jones, Hugh F. ;
Meister, Bernhard K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[4]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[5]   Must a Hamiltonian be Hermitian? [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
AMERICAN JOURNAL OF PHYSICS, 2003, 71 (11) :1095-1102
[6]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[7]   Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes [J].
Bendix, Oliver ;
Fleischmann, Ragnar ;
Kottos, Tsampikos ;
Shapiro, Boris .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[8]   Observation of PT-Symmetry Breaking in Complex Optical Potentials [J].
Guo, A. ;
Salamo, G. J. ;
Duchesne, D. ;
Morandotti, R. ;
Volatier-Ravat, M. ;
Aimez, V. ;
Siviloglou, G. A. ;
Christodoulides, D. N. .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)
[9]   Surface superlattice gap solitons [J].
He, Y. J. ;
Chen, W. H. ;
Wang, H. Z. ;
Malomed, Boris A. .
OPTICS LETTERS, 2007, 32 (11) :1390-1392
[10]   Dispersion control for matter waves and gap solitons in optical superlattices [J].
Louis, PJY ;
Ostrovskaya, EA ;
Kivshar, YS .
PHYSICAL REVIEW A, 2005, 71 (02)