Impact of the Nanorod Structure on the Tandem Thin-Film Solar Cell

被引:3
|
作者
Tang, M. [1 ]
Chang, S. T. [1 ]
Huang, C. -X. [1 ]
Liu, Y. T. [2 ]
Chen, Y. H. [2 ]
机构
[1] Natl Chung Hsing Univ, Dept EE, Taichung 402, Taiwan
[2] Ind Technol & Res Inst, Green Energy & Environm Res Labs, Hsinchu 300, Taiwan
关键词
Nanorod; a-Si; a-SiGe; p-i-n; Solar Cell; PERFORMANCE; SIMULATION; MODEL;
D O I
10.1166/jnn.2011.4353
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The novel thin-film solar cell was investigated with a nanorod structure that could solve the conflict between light absorption and carrier transport in the amorphous silicon (a-Si)/amorphous silicon-germanium (a-SiGe) tandem thin-film solar cell. This structure has an n-type a-Si nanorod array on the substrate, and an a-SiOx p-layer and an a-SiGe i-layer are sequentially grown along the surface of each n-type a-Si nanorod, for the bottom cell. After the above bottom-cell process, a similar process is used to fabricate an amorphous Si p-i-n top cell on the bottom cell. Under sunlight illumination, the light is absorbed along the vertical direction of the nanorod, but as the carrier transport is along the horizontal direction, the nanorod may absorb most of the sunlight. In the meantime, the solar cell is still thin enough for the effective transport of photogenerated carriers.
引用
收藏
页码:5728 / 5732
页数:5
相关论文
共 50 条
  • [11] Spectral characteristics of thin-film stacked-tandem solar modules
    Nakajima, A
    Ichikawa, M
    Sawada, T
    Yoshimi, M
    Yamamoto, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2004, 43 (10): : 7296 - 7302
  • [12] Chromium nanostructures for enhancing light trapping in a thin-film solar cell
    Rahimi, H.
    Karimi, M. J.
    Ghajarpour-Nobandegani, S.
    OPTICAL MATERIALS, 2021, 121 (121)
  • [13] Optical improved structure of polycrystalline silicon-based thin-film solar cell
    Budianu, E
    Purica, M
    Manea, E
    Rusu, E
    Gavrila, R
    Danila, M
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 72 (1-4) : 223 - 229
  • [14] Smoothening intermediate reflecting layer for tandem thin-film silicon solar cells
    Boccard, M.
    Battaglia, C.
    Blondiaux, N.
    Pugin, R.
    Despeisse, M.
    Ballif, C.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 119 : 12 - 17
  • [15] Energy yield of all thin-film perovskite/CIGS tandem solar modules
    Langenhorst, Malte
    Sautter, Benjamin
    Schnnager, Raphael
    Lehr, Jonathan
    Ahlswede, Erik
    Powalla, Michael
    Lennnner, Uli
    Richards, Bryce S.
    Paetzold, Ulrich W.
    PROGRESS IN PHOTOVOLTAICS, 2019, 27 (04): : 290 - 298
  • [16] The substrates and their preparation for polycrystalline silicon thin-film solar cell
    Zhang, LM
    Li, HF
    Huang, Y
    Zhang, HX
    Wan, ZJ
    Xu, Y
    Wang, WJ
    RARE METAL MATERIALS AND ENGINEERING, 2005, 34 : 464 - 466
  • [17] Thin-film silicon solar cell and module analysis by electroluminescence
    Predatsch, H.
    Heinzmann, U.
    Stiebig, H.
    ADVANCED MATERIALS AND CHARACTERIZATION TECHNIQUES FOR SOLAR CELLS II, 2014, 60 : 71 - 75
  • [18] Tandem amorphous/microcrystalline silicon thin-film solar modules: Developments of novel technologies
    Tsai, Chin-Yi
    Tsai, Chin-Yao
    SOLAR ENERGY, 2018, 170 : 419 - 429
  • [19] The impact of charged grain boundaries on thin-film solar cells and characterization
    Metzger, WK
    Gloeckler, M
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (06)
  • [20] Impact of Grain Size and Grain Nature in Thin-Film Solar Cells
    Prabu, R. Thandaiah
    Malathi, S. R.
    Kumar, Rajnish
    Alkhalidi, Huda S.
    Kumar, Atul
    ENERGY TECHNOLOGY, 2024, 12 (01)