Local Cohomology, Cofiniteness and Homological Functors of Modules

被引:3
作者
Bahmanpour, Kamal [1 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Sci, Dept Math, Daneshgah St, Ardebil 5619911367, Iran
关键词
cofinite module; cohomological dimension; ideal transform; local cohomology; Noetherian ring; ABELIAN CATEGORIES; DIMENSION; IDEALS;
D O I
10.21136/CMJ.2022.0050-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be an ideal of a commutative Noetherian ring R. It is shown that the R-modules HIj(M) are I-cofinite for all finitely generated R-modules M and all j is an element of N-0 if and only if the R-modules ExtR(i) (N,HIj(M)) and TorR(i) (N, HIj(M)) are I-cofinite for all finitely generated R-modules M, N and all integers i, j is an element of N-0.
引用
收藏
页码:541 / 558
页数:18
相关论文
共 34 条
[1]   Cofiniteness of extension functors of cofinite modules [J].
Abazari, Rasoul ;
Bahmanpour, Kamal .
JOURNAL OF ALGEBRA, 2011, 330 (01) :507-516
[2]   Local cohomology and Serre subcategories [J].
Aghapournahr, Moharram ;
Melkersson, Leif .
JOURNAL OF ALGEBRA, 2008, 320 (03) :1275-1287
[3]   A Note on Abelian Categories of Cofinite Modules [J].
Bahmanpour, Kamal .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) :254-262
[4]   On a question of Hartshorne [J].
Bahmanpour, Kamal .
COLLECTANEA MATHEMATICA, 2021, 72 (03) :527-568
[5]   Cofiniteness over Noetherian complete local rings [J].
Bahmanpour, Kamal .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (11) :4575-4585
[6]   A study of cofiniteness through minimal associated primes [J].
Bahmanpour, Kamal .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) :1327-1347
[7]   Cohomological dimension, cofiniteness and Abelian categories of cofinite modules [J].
Bahmanpour, Kamal .
JOURNAL OF ALGEBRA, 2017, 484 :168-197
[8]   ON THE CATEGORY OF COFINITE MODULES WHICH IS ABELIAN [J].
Bahmanpour, Kamal ;
Naghipour, Reza ;
Sedghi, Monireh .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (04) :1101-1107
[9]   Cofiniteness of local cohomology modules for ideals of small dimension [J].
Bahmanpour, Kamal ;
Naghipour, Reza .
JOURNAL OF ALGEBRA, 2009, 321 (07) :1997-2021
[10]  
Brodmann M.P., 2013, Local Cohomology: An Algebraic Introduction with Geometric Applications, VSecond