Properties of model atomic free-standing thin films

被引:40
|
作者
Shi, Zane [2 ]
Debenedetti, Pablo G. [1 ]
Stillinger, Frank H. [3 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 11期
基金
美国国家科学基金会;
关键词
GLASS-TRANSITION TEMPERATURE; MONTE-CARLO SIMULATION; POLYMER-FILMS; MOLECULAR SIMULATION; ENERGY LANDSCAPE; VAPOR-DEPOSITION; STABILITY; DYNAMICS; BEHAVIOR; LIQUIDS;
D O I
10.1063/1.3565480
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a computational study of the thermodynamic, dynamic, and structural properties of free-standing thin films, investigated via molecular dynamics simulation of a glass-forming binary Lennard-Jones mixture. An energy landscape analysis is also performed to study glassy states. At equilibrium, species segregation occurs, with the smaller minority component preferentially excluded from the surface. The film's interior density and interface width depend solely on temperature and not the initialization density. The atoms at the surface of the film have a higher lateral diffusivity when compared to the interior. The average difference between the equilibrium and inherent structure energies assigned to individual particles, as a function of the distance from the center of the film, increases near the surface. A minimum of this difference occurs in the region just under the liquid-vapor interface. This suggests that the surface atoms are able to sample the underlying energy landscape more effectively than those in the interior, and we suggest a possible relationship of this observation to the recently reported formation of stable glasses by vapor phase deposition. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3565480]
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Electrical conductivity of free-standing mesoporous silicon thin films
    Khardani, M
    Bouaïcha, M
    Dimassi, W
    Zribi, M
    Aouida, S
    Bessaïs, B
    THIN SOLID FILMS, 2006, 495 (1-2) : 243 - 245
  • [22] Simulated Glass Transition in Free-Standing Thin Polystyrene Films
    Baljon, A. R. C.
    Williams, S.
    Balabaev, N. K.
    Paans, F.
    Hudzinskyy, D.
    Lyulin, A. V.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2010, 48 (11) : 1160 - 1167
  • [23] Synthesis and characterization of flexible, free-standing, energetic thin films
    Clark, Billy R.
    Pantoya, Michelle L.
    Hunt, Emily M.
    Kelly, Trent J.
    Allen, Benton F.
    Heaps, Ronald J.
    Daniels, Michael A.
    SURFACE & COATINGS TECHNOLOGY, 2015, 284 : 422 - 426
  • [24] Preparation of ZnO Thin Films on Free-Standing Diamond Substrates
    唐可
    王林军
    黄健
    徐闰
    赖建明
    王俊
    闵嘉华
    史伟民
    夏义本
    Plasma Science and Technology, 2009, 11 (05) : 587 - 591
  • [25] Transient creep in free-standing thin polycrystalline aluminum films
    Kalkman, AJ
    Verbruggen, AH
    Janssen, GCAM
    Radelaar, S
    JOURNAL OF APPLIED PHYSICS, 2002, 92 (09) : 4968 - 4975
  • [26] Structural and optical properties of free-standing smectic films
    Izabela Sliwa
    A. V. Zakharov
    The European Physical Journal E, 2019, 42
  • [27] Rotational relaxation processes in free-standing thin SmC films
    A. V. Zakharov
    A. A. Vakulenko
    Physics of the Solid State, 2016, 58 : 190 - 198
  • [28] Nanoprocessing of free-standing thin films by ultrafast laser ablation
    Uesugi, Yuuki
    Kozawa, Yuichi
    Sato, Shunichi
    LASER-BASED MICRO- AND NANOPROCESSING XV, 2021, 11674
  • [29] Migration of grain boundaries in free-standing nanocrystalline thin films
    Dynkin, N. K.
    Gutkin, M. Yu
    SCRIPTA MATERIALIA, 2012, 66 (02) : 73 - 76
  • [30] Mixing in thermal convection of very thin free-standing films
    Winkler, M.
    Abel, M.
    PHYSICA SCRIPTA, 2013, T155