The braid group Bn,m(S2) and a generalisation of the Fadell-Neuwirth short exact sequence

被引:18
作者
Gonçalves, DL
Guaschi, J
机构
[1] Univ Sao Paulo, IME, Dept Matemat, BR-05311970 Sao Paulo, Brazil
[2] Univ Toulouse 3, UMR CNRS 5580, Lab Math Emile Picard, UFR MIG, F-31062 Toulouse, France
关键词
Braid group; group presentation; Fadell-Neuwirth short exact sequence; torsion elements;
D O I
10.1142/S0218216505003841
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m, n is an element of N. We define B-n,B-m (S-2) to be the set of (n + m)-braids of the sphere whose associated permutation lies in the subgroup S-n x S-m of the symmetric group Sn+m on n + m letters. In a previous paper [13], we showed that if n >= 3, then there exists the following generalisation of the Fadell-Neuwirth short exact sequence: 1 -> B-m(S-2\{x(1),...,x(n)}) -> B-n,B-m (S-2) ->(p*) B-n(S-2) -> 1, where p(*): B-n,B-m (S-2) -> B-n(S-2) is the group homomorphism (defined for all n is an element of N) given geometrically by forgetting the last m strings. In this paper we study the splitting of this short exact sequence, as well as the existence of a cross-section for the fibration p: D-n,D-m (S-2) -> D-n(S-2) of the quotients of the corresponding configuration spaces. Our main results are as follows: if n = 1 (respectively, n = 2) then the homomorphism p. and the fibration p admit (respectively, do not admit) a section. If n = 3, then p. and p admit a section if and only if m equivalent to 0, 2 (mod 3). If n >= 4, we show that if p(*) and p admit a section then m equivalent to epsilon(1)(n-1)(n-2) - epsilon(2)n(n-2) (mod n(n-1)(n-2)), where epsilon(1), epsilon(2) is an element of {0, 1}. Finally, we show that B-n(S-2) is generated by two of its torsion elements.
引用
收藏
页码:375 / 403
页数:29
相关论文
共 23 条
[1]   BRAIDS AND PERMUTATIONS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (03) :643-649
[2]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[3]  
Artin Emil, 1926, Abh. Math. Semin. Univ. Hamb, V4, P47, DOI DOI 10.1007/BF02950718
[4]  
Baues H. J, 1977, Lecture Notes in Mathematics, V628
[5]  
Birman J S., 1974, BRAIDS LINKS MAPPING, V82
[6]   On loop spaces of configuration spaces [J].
Cohen, FR ;
Gitler, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (05) :1705-1748
[7]   HOMOTOPY GROUPS OF CONFIGURATION SPACES AND STRING PROBLEM OF DIRAC [J].
FADELL, E .
DUKE MATHEMATICAL JOURNAL, 1962, 29 (02) :231-&
[8]   BRAID GROUPS OF E2 AND S2 [J].
FADELL, E ;
VANBUSKIRK, J .
DUKE MATHEMATICAL JOURNAL, 1962, 29 (02) :243-&
[9]  
Fadell E., 1962, Math. Scand, V10, P111, DOI [10.7146/math.scand.a-10517, DOI 10.7146/MATH.SCAND.A-10517]
[10]  
Fox RH., 1962, Math. Scand., V10, P119, DOI 10.7146/math.scand.a-10518