Diffusion Deformable Model for 4D Temporal Medical Image Generation

被引:59
作者
Kim, Boah [1 ]
Ye, Jong Chul [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I | 2022年 / 13431卷
基金
新加坡国家研究基金会;
关键词
Deep learning; Medical image generation; Image deformation; Diffusion model;
D O I
10.1007/978-3-031-16431-6_51
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Temporal volume images with 3D-ht (4D) information are often used in medical imaging to statistically analyze temporal dynamics or capture disease progression. Although deep-learning-based generative models for natural images have been extensively studied, approaches for temporal medical image generation such as 4D cardiac volume data are limited. In this work, we present a novel deep learning model that generates intermediate temporal volumes between source and target volumes. Specifically, we propose a diffusion deformable model (DDM) by adapting the denoising diffusion probabilistic model that has recently been widely investigated for realistic image generation. Our proposed DDM is composed of the diffusion and the deformation modules so that DDM can learn spatial deformation information between the source and target volumes and provide a latent code for generating intermediate frames along a geodesic path. Once our model is trained, the latent code estimated from the diffusion module is simply interpolated and fed into the deformation module, which enables DDM to generate temporal frames along the continuous trajectory while preserving the topology of the source image. We demonstrate the proposed method with the 4D cardiac MR image generation between the diastolic and systolic phases for each subject. Compared to the existing deformation methods, our DDM achieves high performance on temporal volume generation.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 20 条
[1]   Spatial-temporal analysis of cause-specific cardiovascular hospital admission in Beijing, China [J].
Amsalu, Endawoke ;
Liu, Mengyang ;
Li, Qihuan ;
Wang, Xiaonan ;
Tao, Lixin ;
Liu, Xiangtong ;
Luo, Yanxia ;
Yang, Xinghua ;
Zhang, Yingjie ;
Li, Weimin ;
Li, Xia ;
Wang, Wei ;
Guo, Xiuhua .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH, 2021, 31 (06) :595-606
[2]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[3]   An Unsupervised Learning Model for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian V. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9252-9260
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[6]   ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models [J].
Choi, Jooyoung ;
Kim, Sungwon ;
Jeong, Yonghyun ;
Gwon, Youngjune ;
Yoon, Sungroh .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :14347-14356
[7]   Multimodal MRI synthesis using unified generative adversarial networks [J].
Dai, Xianjin ;
Lei, Yang ;
Fu, Yabo ;
Curran, Walter J. ;
Liu, Tian ;
Mao, Hui ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2020, 47 (12) :6343-6354
[8]  
Dalca AV, 2019, ADV NEUR IN, V32
[9]   Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration [J].
Dalca, Adrian V. ;
Balakrishnan, Guha ;
Guttag, John ;
Sabuncu, Mert R. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :729-738
[10]  
Dey N., 2021, P IEEECVF INT C COMP, P3929