A low-noise on-chip coherent microwave source

被引:18
|
作者
Yan, Chengyu [1 ,2 ]
Hassel, Juha [3 ,4 ]
Vesterinen, Visa [4 ]
Zhang, Jinli [1 ,5 ]
Ikonen, Joni [1 ]
Gronberg, Leif [4 ]
Goetz, Jan [1 ,3 ]
Mottonen, Mikko [1 ,4 ]
机构
[1] Aalto Univ, QTF Ctr Excellence, Dept Appl Phys, QCD Labs, Aalto, Finland
[2] Huazhong Univ Sci & Technol, PGMF & Sch Phys, Hubei Key Lab Gravitat & Quantum Phys, MOE Key Lab Fundamental Phys Quant Measurement, Wuhan, Peoples R China
[3] IQM, Espoo, Finland
[4] Finland Ltd, VTT Tech Res Ctr, QTF Ctr Excellence, Espoo, Finland
[5] Nankai Univ, Coll Elect Informat & Optic Engn, Tianjin, Peoples R China
基金
芬兰科学院; 欧洲研究理事会;
关键词
QUANTUM SUPREMACY;
D O I
10.1038/s41928-021-00680-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The scaling up of quantum computers operating in the microwave domain requires advanced control electronics, and the use of integrated components that operate at the temperature of the quantum devices is potentially beneficial. However, such an approach requires ultralow power dissipation and high signal quality to ensure quantum-coherent operations. Here we report an on-chip device that is based on a Josephson junction coupled to a spiral resonator and is capable of coherent continuous-wave microwave emission. We show that the characteristics of the device accurately follow a theory based on the perturbative treatment of a capacitively shunted Josephson junction as the gain element. The infidelity of typical quantum gate operations due to phase noise of this cryogenic 25 pW microwave source is less than 0.1% up to 10 ms evolution time, which is below the infidelity caused by dephasing in state-of-the-art superconducting qubits. Together with future cryogenic amplitude and phase modulation techniques, our approach may lead to scalable cryogenic control systems for quantum processors. An on-chip device that is based on a Josephson junction coupled to a fabricated superconducting resonator can provide a source of coherent microwave radiation for potential use in scaled quantum circuits.
引用
收藏
页码:885 / +
页数:17
相关论文
共 50 条
  • [1] A low-noise on-chip coherent microwave source
    Chengyu Yan
    Juha Hassel
    Visa Vesterinen
    Jinli Zhang
    Joni Ikonen
    Leif Grönberg
    Jan Goetz
    Mikko Möttönen
    Nature Electronics, 2021, 4 : 885 - 892
  • [2] Low-noise microwave generation using an on-chip Brillouin laser
    Li, Jiang
    Lee, Hansuek
    Vahala, Kerry
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [3] A low-noise microwave signal source
    V. M. Vladimirov
    I. A. Zapryagaev
    V. G. Konnov
    G. Ya. Kurkin
    V. V. Tarnetskii
    K. N. Chernov
    Instruments and Experimental Techniques, 2010, 53 : 708 - 709
  • [4] A low-noise microwave signal source
    Vladimirov, V. M.
    Zapryagaev, I. A.
    Konnov, V. G.
    Kurkin, G. Ya.
    Tarnetskii, V. V.
    Chernov, K. N.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2010, 53 (05) : 708 - 709
  • [5] Generation of coherent low-noise microwave oscillations
    Son R.B.
    Radioelectronics and Communications Systems, 2008, 51 (12) : 669 - 674
  • [6] Photonic chip-based low-noise microwave oscillator
    Igor Kudelin
    William Groman
    Qing-Xin Ji
    Joel Guo
    Megan L. Kelleher
    Dahyeon Lee
    Takuma Nakamura
    Charles A. McLemore
    Pedram Shirmohammadi
    Samin Hanifi
    Haotian Cheng
    Naijun Jin
    Lue Wu
    Samuel Halladay
    Yizhi Luo
    Zhaowei Dai
    Warren Jin
    Junwu Bai
    Yifan Liu
    Wei Zhang
    Chao Xiang
    Lin Chang
    Vladimir Iltchenko
    Owen Miller
    Andrey Matsko
    Steven M. Bowers
    Peter T. Rakich
    Joe C. Campbell
    John E. Bowers
    Kerry J. Vahala
    Franklyn Quinlan
    Scott A. Diddams
    Nature, 2024, 627 : 534 - 539
  • [7] Photonic chip-based low-noise microwave oscillator
    Kudelin, Igor
    Groman, William
    Ji, Qing-Xin
    Guo, Joel
    Kelleher, Megan L.
    Lee, Dahyeon
    Nakamura, Takuma
    Mclemore, Charles A.
    Shirmohammadi, Pedram
    Hanifi, Samin
    Cheng, Haotian
    Jin, Naijun
    Wu, Lue
    Halladay, Samuel
    Luo, Yizhi
    Dai, Zhaowei
    Jin, Warren
    Bai, Junwu
    Liu, Yifan
    Zhang, Wei
    Xiang, Chao
    Chang, Lin
    Iltchenko, Vladimir
    Miller, Owen
    Matsko, Andrey
    Bowers, Steven M.
    Rakich, Peter T.
    Campbell, Joe C.
    Bowers, John E.
    Vahala, Kerry J.
    Quinlan, Franklyn
    Diddams, Scott A.
    NATURE, 2024, 627 (8004) : 534 - 539
  • [8] A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors
    Sun, KJ
    Tsai, ZM
    Lin, KY
    Wang, H
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (04) : 1554 - 1560
  • [9] Low-noise cryogenic microwave amplifier characterization with a calibrated noise source
    Malnou, M.
    Larson, T. F. Q.
    Teufel, J. D.
    Lecocq, F.
    Aumentado, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (03):
  • [10] Low-power low-noise analog signal conditioning chip with on-chip drivers for healthcare applications
    Joshi, Sanjay
    Thaker, Viral
    Amaravati, Anvesha
    Shojaei-Baghini, Maryam
    MICROELECTRONICS JOURNAL, 2012, 43 (11) : 828 - 837