The asymmetric exclusion process: Comparison of update procedures

被引:211
作者
Rajewsky, N [1 ]
Santen, L
Schadschneider, A
Schreckenberg, M
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Gerhard Mercator Univ Duisburg, Theoret Phys FB 10, D-47048 Duisburg, Germany
关键词
asymmetric exclusion process; boundary-induced phase transitions; steady state; matrix product Ansatz; discrete-time updates;
D O I
10.1023/A:1023047703307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The asymmetric exclusion process (ASEP) has attracted a lot of interest not only because of its many applications, e.g., in the context of the kinetics of biopolymerization and traffic flow theory, but also because it is a paradigmatic model for nonequilibrium systems. Here we study the ASEP for different types of updates, namely random-sequential, sequential, sublattice-parallel, and parallel. In order to compare the effects of the different update procedures on the properties of the stationary state, we use large-scale Monte Carlo simulations and analytical methods, especially the so-called matrix-product Ansatz (MPA). We present in detail the exact solution far the model with sublattice-parallel and sequential updates using the MPA. For the case of parallel update, which is important for applications like traffic flow theory, we determine the phase diagram, the current, and density profiles based on Monte Carlo simulations. We furthermore suggest an MPA for that case and derive the corresponding matrix algebra.
引用
收藏
页码:151 / 194
页数:44
相关论文
共 61 条
  • [1] N-species stochastic models with boundaries and quadratic algebras
    Alcaraz, FC
    Dasmahapatra, S
    Rittenberg, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03): : 845 - 878
  • [2] REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS
    ALCARAZ, FC
    DROZ, M
    HENKEL, M
    RITTENBERG, V
    [J]. ANNALS OF PHYSICS, 1994, 230 (02) : 250 - 302
  • [3] Stochastic models on a ring and quadratic algebras. The three-species diffusion problem
    Arndt, PF
    Heinzel, T
    Rittenberg, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03): : 833 - 843
  • [4] Cellular automata model of car traffic in a two-dimensional street network
    Chopard, B
    Luthi, PO
    Queloz, PA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10): : 2325 - 2336
  • [5] CHOPARD B, IN PRESS P WORKSH TR
  • [6] AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES
    DERRIDA, B
    DOMANY, E
    MUKAMEL, D
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) : 667 - 687
  • [7] EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION
    DERRIDA, B
    EVANS, MR
    HAKIM, V
    PASQUIER, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07): : 1493 - 1517
  • [8] Derrida B., 1997, NONEQUILIBRIUM STAT
  • [9] Jamming transition in a cellular automaton model for traffic flow
    Eisenblatter, B
    Santen, L
    Schadschneider, A
    Schreckenberg, M
    [J]. PHYSICAL REVIEW E, 1998, 57 (02): : 1309 - 1314
  • [10] ESSER J, 1997, INT J MOD PHYS, V8, P105