Detection of explosives by surface enhanced Raman scattering using substrate with a monolayer of ordered Au nanoparticles

被引:17
作者
Chen, T. F. [1 ]
Lu, S. H. [1 ,2 ]
Wang, A. J. [1 ]
Zheng, D. [3 ]
Wu, Z. L. [3 ]
Wang, Y. S. [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Peoples Publ Secur Univ China, Sch Police Informat Engn, Beijing 100038, Peoples R China
[3] Beijing Normal Univ, Analyt & Testing Ctr, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-assembly; Ordered Au nanoparticles; Linear arrays; SERS; Explosives; GOLD NANOPARTICLES; SPECTROSCOPY; ARRAYS; RDX;
D O I
10.1016/j.apsusc.2014.09.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Monolayers with different structures arranged by 5 nm Au nanoparticles were grown using a self-assembly method on Si substrates. Raman spectra of ammonium nitrate (NH4NO3) and cyclotrimethylenetrinitramine (RDX) explosives adsorbed on bare and Au nanoparticle covered Si substrates were measured. Effects of Au monolayers and their structures on surface enhanced Raman scattering (SERS) of NH4NO3 and RDX were investigated. The monolayer arranged by Au nanoparticles into linear arrays is more sensitive to the explosives than that arranged into hexagonal close-packed structure. The detection limit using the substrate covered by a monolayer of Au nanoparticle linear arrays is about 7.7 ppm for NH4NO3 and 0.19 ppm for RDX. The integrated intensity of the vibration peak increases linearly with an increase in explosive concentration in log-log scales for both NH4NO3 and RDX. The enhancement factor is 7.0 x 10(4) for RDX. Monolayers of Au nanoparticles arranged into linear arrays have potential applications in detecting or identifying explosives at very low levels of concentration. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:940 / 945
页数:6
相关论文
共 30 条
[1]   Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing [J].
Abu Hatab, Nahla A. ;
Oran, Jenny M. ;
Sepaniak, Michael J. .
ACS NANO, 2008, 2 (02) :377-385
[2]   Trace level detection and identification of nitro-based explosives by surface-enhanced Raman spectroscopy [J].
Botti, S. ;
Almaviva, S. ;
Cantarini, L. ;
Palucci, A. ;
Puiu, A. ;
Rufoloni, A. .
JOURNAL OF RAMAN SPECTROSCOPY, 2013, 44 (03) :463-468
[3]  
Calzzani Jr F. A., 2008, P SOC PHOTO-OPT INS, V6945
[4]  
Castillo R. I., 2010, SPECTROCHIM ACTA A, V76, P137
[5]   A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry [J].
Fan, Meikun ;
Andrade, Gustavo F. S. ;
Brolo, Alexandre G. .
ANALYTICA CHIMICA ACTA, 2011, 693 (1-2) :7-25
[6]   Detection of explosive vapour using surface-enhanced Raman spectroscopy [J].
Fang, X. ;
Ahmad, S. R. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 97 (03) :723-726
[7]   Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy [J].
Hatab, Nahla A. ;
Eres, Gyula ;
Hatzinger, Paul B. ;
Gu, Baohua .
JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (10) :1131-1136
[8]   COMPARISON OF THE MOLECULAR-STRUCTURE OF "HEXAHYDRO-1,3,5-TRINITRO-S-TRIAZINE IN THE VAPOR, SOLUTION, AND SOLID-PHASES [J].
KARPOWICZ, RJ ;
BRILL, TB .
JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (03) :348-352
[9]   Shell-isolated nanoparticle-enhanced Raman spectroscopy [J].
Li, Jian Feng ;
Huang, Yi Fan ;
Ding, Yong ;
Yang, Zhi Lin ;
Li, Song Bo ;
Zhou, Xiao Shun ;
Fan, Feng Ru ;
Zhang, Wei ;
Zhou, Zhi You ;
Wu, De Yin ;
Ren, Bin ;
Wang, Zhong Lin ;
Tian, Zhong Qun .
NATURE, 2010, 464 (7287) :392-395
[10]   Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates [J].
Lin, XM ;
Jaeger, HM ;
Sorensen, CM ;
Klabunde, KJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (17) :3353-3357