Applications of genome-scale metabolic network model in metabolic engineering

被引:71
作者
Kim, Byoungjin [1 ]
Kim, Won Jun [1 ]
Kim, Dong In [1 ]
Lee, Sang Yup [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Ctr Syst & Synthet Biotechnol,Plus Program BK21, BioProc Engn Res Ctr,Bioinformat Res Ctr,Inst Bio, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Genome-scale metabolic network; Systems metabolic engineering; Gene knock-out prediction; Gene amplification prediction; Metabolic pathway prediction; Integrated genome-scale model; IN-SILICO ANALYSIS; ESCHERICHIA-COLI; KNOCKOUT STRATEGIES; CHEMICAL PRODUCTION; PICHIA-PASTORIS; EXPRESSION DATA; RECONSTRUCTION; FLUX; DESIGN; PREDICTION;
D O I
10.1007/s10295-014-1554-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome-scale metabolic network model (GEM) is a fundamental framework in systems metabolic engineering. GEM is built upon extensive experimental data and literature information on gene annotation and function, metabolites and enzymes so that it contains all known metabolic reactions within an organism. Constraint-based analysis of GEM enables the identification of phenotypic properties of an organism and hypothesis-driven engineering of cellular functions to achieve objectives. Along with the advances in omics, high-throughput technology and computational algorithms, the scope and applications of GEM have substantially expanded. In particular, various computational algorithms have been developed to predict beneficial gene deletion and amplification targets and used to guide the strain development process for the efficient production of industrially important chemicals. Furthermore, an Escherichia coli GEM was integrated with a pathway prediction algorithm and used to evaluate all possible routes for the production of a list of commodity chemicals in E. coli. Combined with the wealth of experimental data produced by high-throughput techniques, much effort has been exerted to add more biological contexts into GEM through the integration of omics data and regulatory network information for the mechanistic understanding and improved prediction capabilities. In this paper, we review the recent developments and applications of GEM focusing on the GEM-based computational algorithms available for microbial metabolic engineering.
引用
收藏
页码:339 / 348
页数:10
相关论文
共 95 条
[1]   The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum [J].
Agren, Rasmus ;
Liu, Liming ;
Shoaie, Saeed ;
Vongsangnak, Wanwipa ;
Nookaew, Intawat ;
Nielsen, Jens .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (03)
[2]   Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli [J].
Alper, H ;
Jin, YS ;
Moxley, JF ;
Stephanopoulos, G .
METABOLIC ENGINEERING, 2005, 7 (03) :155-164
[3]  
Aung Hnin W, 2013, Ind Biotechnol (New Rochelle N Y), V9, P215
[4]   GLAMM: Genome-Linked Application for Metabolic Maps [J].
Bates, John T. ;
Chivian, Dylan ;
Arkin, Adam P. .
NUCLEIC ACIDS RESEARCH, 2011, 39 :W400-W405
[5]   Context-specific metabolic networks are consistent with experiments [J].
Becker, Scott A. ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (05)
[6]   Integration of expression data in genome-scale metabolic network reconstructions [J].
Blazier, Anna S. ;
Papin, Jason A. .
FRONTIERS IN PHYSIOLOGY, 2012, 3
[7]   Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation [J].
Bordbar, Aarash ;
Mo, Monica L. ;
Nakayasu, Ernesto S. ;
Schrimpe-Rutledge, Alexandra C. ;
Kim, Young-Mo ;
Metz, Thomas O. ;
Jones, Marcus B. ;
Frank, Bryan C. ;
Smith, Richard D. ;
Peterson, Scott N. ;
Hyduke, Daniel R. ;
Adkins, Joshua N. ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2012, 8
[8]   Inferring Carbon Sources from Gene Expression Profiles Using Metabolic Flux Models [J].
Brandes, Aaron ;
Lun, Desmond S. ;
Ip, Kuhn ;
Zucker, Jeremy ;
Colijn, Caroline ;
Weiner, Brian ;
Galagan, James E. .
PLOS ONE, 2012, 7 (05)
[9]   Improved vanillin production in baker's yeast through in silico design [J].
Brochado, Ana Rita ;
Matos, Claudia ;
Moller, Birger L. ;
Hansen, Jorgen ;
Mortensen, Uffe H. ;
Patil, Kiran Raosaheb .
MICROBIAL CELL FACTORIES, 2010, 9
[10]   Path2Models: large-scale generation of computational models from biochemical pathway maps [J].
Buechel, Finja ;
Rodriguez, Nicolas ;
Swainston, Neil ;
Wrzodek, Clemens ;
Czauderna, Tobias ;
Keller, Roland ;
Mittag, Florian ;
Schubert, Michael ;
Glont, Mihai ;
Golebiewski, Martin ;
van Iersel, Martijn ;
Keating, Sarah ;
Rall, Matthias ;
Wybrow, Michael ;
Hermjakob, Henning ;
Hucka, Michael ;
Kell, Douglas B. ;
Mueller, Wolfgang ;
Mendes, Pedro ;
Zell, Andreas ;
Chaouiya, Claudine ;
Saez-Rodriguez, Julio ;
Schreiber, Falk ;
Laibe, Camille ;
Draeger, Andreas ;
Le Novere, Nicolas .
BMC SYSTEMS BIOLOGY, 2013, 7