Electrospun matrices made of poly(α-hydroxy acids) for medical use

被引:46
作者
Piskin, Erhan [1 ]
Boelgen, Nimet
Egri, Sinan
Isoglu, Ismail Alper
机构
[1] Hacettepe Univ, Dept Chem Engn, TR-06532 Ankara, Turkey
[2] Hacettepe Univ, Bioengn Div & Biyomedtek, Ankara, Turkey
关键词
drug loading and release; electrospinning; nanofibers and nonwoven matrices; poly(alpha-hydroxy acid); tissue-engineering scaffold; wound dressings;
D O I
10.2217/17435889.2.4.441
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biomaterials are widely used in diverse applications as substances, materials or important elements of biomedical devices. Biodegradable polymers, both natural and synthetic, have been utilized in applications in which they act as temporary substitutes. Poly(a-hydroxy acids), especially lactic acids and glycolic acid and their copolymers with epsilon-caprolactone, are the most widely known and used among all biodegradable polymers. They degrade in vivo into safe end products mainly by hydrolysis in a few weeks to several months, depending on several factors, including molecular structure/morphology, average molecular weight, size and shape. They are processed into tailor-made materials for diverse applications, although mainly for soft and hard tissue repair. Electrospinning is a method of producing nanofibers and nonwoven matrices from their solutions and melts. Several factors affect fiber diameter and resulting nonwoven structures/morphologies. Recently, electrospun matrices made of lactic acids, glycolic acid and epsilon-caprolactone homo- and co-polymers have been attracting increasing attention for fabrication of novel materials for medical use. This review briefly describes poly(alpha-hydroxy acids) and the elecrospinning process, and gives some selected recent applications of electrospun matrices made from these polymers.
引用
收藏
页码:441 / 457
页数:17
相关论文
共 130 条
[1]   BASIC PROPERTIES OF POLYLACTIC ACID PRODUCED BY THE DIRECT CONDENSATION POLYMERIZATION OF LACTIC-ACID [J].
AJIOKA, M ;
ENOMOTO, K ;
SUZUKI, K ;
YAMAGUCHI, A .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1995, 68 (08) :2125-2131
[2]  
ANNIS D, 1978, T AM SOC ART INT ORG, V24, P209
[3]   Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates [J].
Badami, AS ;
Kreke, MR ;
Thompson, MS ;
Riffle, JS ;
Goldstein, AS .
BIOMATERIALS, 2006, 27 (04) :596-606
[4]  
BAKKUM EA, 1996, REPROD MED REV, V5, P1
[5]   Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes [J].
Bashur, Chris A. ;
Dahlgren, Linda A. ;
Goldstein, Aaron S. .
BIOMATERIALS, 2006, 27 (33) :5681-5688
[6]  
BERO M, 1990, MAKROMOL CHEM, V191, P2287
[7]   Anionic polymerization of D,L-lactide initiated by lithium diisopropylamide [J].
Bhaw-Luximon, A ;
Jhurry, D ;
Spassky, N ;
Pensec, S ;
Belleney, J .
POLYMER, 2001, 42 (24) :9651-9656
[8]   In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions [J].
Boelgen, N. ;
Vargel, I. ;
Korkusuz, P. ;
Menceloglu, Y. Z. ;
Piskin, E. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2007, 81B (02) :530-543
[9]  
Bognitzki M, 2001, ADV MATER, V13, P70, DOI 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO
[10]  
2-H