Couplings of the Brownian motion via discrete approximation under lower Ricci curvature bounds

被引:0
作者
Kuwada, Kazumasa [1 ]
机构
[1] Ochanomizu Univ, Grad Sch Humanities & Sci, Tokyo 1128610, Japan
来源
PROBABILISTIC APPROACH TO GEOMETRY | 2010年 / 57卷
关键词
Coupling by reflection; synchronous coupling; Ricci curvature; gradient estimate; METRIC MEASURE-SPACES; GRADIENT; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Along an idea of von Renesse, couplings of the Brownian motion on a Riemannian manifold and their extensions are studied. We construct couplings as a limit of coupled geodesic random walks whose components approximate the Brownian motion respectively. We recover Kendall and Cranston's result under lower Ricci curvature bounds instead of sectional curvature bounds imposed by von Renesse. Our method provides applications of coupling methods on spaces admitting a sort of singularity.
引用
收藏
页码:273 / 292
页数:20
相关论文
共 50 条