Along an idea of von Renesse, couplings of the Brownian motion on a Riemannian manifold and their extensions are studied. We construct couplings as a limit of coupled geodesic random walks whose components approximate the Brownian motion respectively. We recover Kendall and Cranston's result under lower Ricci curvature bounds instead of sectional curvature bounds imposed by von Renesse. Our method provides applications of coupling methods on spaces admitting a sort of singularity.
机构:
Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R ChinaZhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
Jiang, Wenshuai
Sheng, Weimin
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R ChinaZhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
Sheng, Weimin
Zhang, Huaiyu
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R ChinaZhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
机构:
Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, ItalyScuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
Antonelli, Gioacchino
Pasqualetto, Enrico
论文数: 0引用数: 0
h-index: 0
机构:
Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, ItalyScuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
Pasqualetto, Enrico
Pozzetta, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz, Via Cintia, I-80126 Naples, ItalyScuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy