Response-Surface-Based Bayesian Inference for Power System Dynamic Parameter Estimation

被引:40
作者
Xu, Yijun [1 ]
Huang, Can [2 ]
Chen, Xiao [3 ]
Mili, Lamine [1 ]
Tong, Charles H. [3 ]
Korkali, Mert [2 ]
Min, Liang [2 ]
机构
[1] Virginia Polytech Inst & State Univ, Northern Virginia Ctr, Bradley Dept Elect & Comp Engn, Falls Church, VA 22043 USA
[2] Lawrence Livermore Natl Lab, Computat Engn Div, Livermore, CA 94550 USA
[3] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
关键词
Dynamic parameter estimation; PMU; polynomial chaos expansion (PCE); response surface; Bayesian inference; Metropolis-Hastings; analysis of variance (ANOVA); STATE ESTIMATION; POLYNOMIAL CHAOS; UNCERTAINTY;
D O I
10.1109/TSG.2019.2892464
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a new response-surface-based Bayesian inference approach for power system dynamic parameter estimation of a decentralized generator using phasor-measurement-unit measurement. The response surface for the decentralized generator model is formulated through a polynomial-chaos-based surrogate. This surrogate allows us to efficiently evaluate the time-consuming dynamic solver at parameter values through a polynomial-based reduced-order representation. In addition, a polynomial-chaos-based analysis of variance is performed to screen out model parameters while ensuring system observability. In dealing with sampling the non-Gaussian posterior distribution for the parameters, the Metropolis-Hastings sampler is adopted. The simulations conducted in the New England system under different system events show that the proposed method can achieve a speedup factor of two orders or magnitude compared with the traditional method while providing full probabilistic distribution of model parameters and achieving the same level of accuracy.
引用
收藏
页码:5899 / 5909
页数:11
相关论文
共 28 条
[1]  
[Anonymous], VER MOD DAT TURB GOV
[2]  
[Anonymous], VER MOD DAT GEN EXC
[3]  
[Anonymous], PESTR18 IEEE
[4]  
[Anonymous], IEEE T POWER DEL
[5]   Estimating Dynamic Model Parameters for Adaptive Protection and Control in Power System [J].
Ariff, M. A. M. ;
Pal, B. C. ;
Singh, A. K. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (02) :829-900
[6]   Inertia Estimation of the GB Power System Using Synchrophasor Measurements [J].
Ashton, Phillip M. ;
Saunders, Christopher S. ;
Taylor, Gareth A. ;
Carter, Alex M. ;
Bradley, Martin E. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (02) :701-709
[7]   Switching Markov Gaussian Models for Dynamic Power System Inertia Estimation [J].
Cao, Xue ;
Stephen, Bruce ;
Abdulhadi, Ibrahim F. ;
Booth, Campbell D. ;
Burt, Graeme M. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) :3394-3403
[8]   Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information [J].
Guo, Song ;
Norris, Sean ;
Bialek, Janusz .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (06) :2854-2861
[9]   Power system modeling for inverse problems [J].
Hiskens, IA .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (03) :539-551
[10]   Calibrating Parameters of Power System Stability Models Using Advanced Ensemble Kalman Filter [J].
Huang, Renke ;
Diao, Ruisheng ;
Li, Yuanyuan ;
Sanchez-Gasca, Juan ;
Huang, Zhenyu ;
Thomas, Brian ;
Etingov, Pavel ;
Kincic, Slaven ;
Wang, Shaobu ;
Fan, Rui ;
Matthews, Gordon ;
Kosterev, Dmitry ;
Yang, Steve ;
Zhao, Junbo .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (03) :2895-2905