Numerical investigation of frictional drag reduction with an air layer concept on the hull of a ship

被引:11
|
作者
Zhang, Jun [1 ]
Yang, Shuo [1 ]
Liu, Jing [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210016, Peoples R China
[2] Nanyang Technol Univ, Energy Res Inst NTU, Singapore, Singapore
关键词
Winged air induction pipe (WAIP); drag reduction; frictional resistance reduction; hull of ship; OpenFOAM; BUBBLE GENERATION; RESISTANCE; HYDROFOIL; DEVICE; WAVE;
D O I
10.1007/s42241-019-0063-8
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A novel air bubble lubrication method using the winged air induction pipe (WAIP) device is used to reduce the frictional drag of the hull of the ship and hence increase the efficiency of the propulsion system. This bubble lubrication technique utilizes the negative pressure region above the upper surface of the hydrofoil as the ship moves forward to drive air to the skin of the hull. In the present study, the reduction rate of the drag by applying the WAIP device is numerically investigated with the open source toolbox OpenFOAM. The generated air layer and the bubbles are observed. The numerical results indicate that the reduction rate of the drag closely depends on the depth of the submergence of the hydrofoil, the angle of attack of the hydrofoil, and the pressure in the air inlet. It is also proportional to the air flow rate. The underlying physics of the fluid dynamics is explored.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 50 条
  • [31] Numerical investigation of drag reduction in a Class 5 medium duty truck
    Norouzi, M.
    Pooladi, M. A.
    Mahmoudi, M.
    JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 2016, 10 (03) : 2387 - 2400
  • [32] Experimental and Numerical Investigation of Bio-Inspired Riblet for Drag Reduction
    Sharma, Vikas
    Dutta, Sushanta
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (02):
  • [33] Experimental and numerical investigation of transversal traveling surface waves for drag reduction
    Meysonnat, Pascal S.
    Roggenkamp, Dorothee
    Li, Wenfeng
    Roidl, Benedikt
    Schroeder, Wolfgang
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2016, 55 : 313 - 323
  • [34] Numerical investigation of drag and heat reduction in hypersonic spiked blunt bodies
    M. Tahani
    M. S. Karimi
    A. Mahmoudi Motlagh
    S. Mirmahdian
    Heat and Mass Transfer, 2013, 49 : 1369 - 1384
  • [35] NUMERICAL INVESTIGATION OF STEADY BLOWING ON ACTIVE DRAG REDUCTION OF A TRUCK MODEL
    Zhang, Cheng
    Ge, Haiwen
    Bakhoum, Ezzat
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 9, 2023,
  • [36] Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction
    Xie, Wei
    Luo, Zhenbing
    Zhou, Yan
    Peng, Wenqiang
    Liu, Qiang
    Wang, Dengpan
    CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (08) : 75 - 91
  • [37] Numerical Investigation of Riblets Drag Reduction Using Large Eddy Simulation
    Li, Dichen
    Wei, Chuang
    Qian, Zhansen
    2023 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY, VOL II, APISAT 2023, 2024, 1051 : 1513 - 1524
  • [38] Investigation of different flow parameters on air layer drag reduction (ALDR) performance using a hybrid stability analysis and numerical solution of the two-phase flow equations
    Montazeri, Mohammad Hossein
    Alishahi, Mohammad Mehdi
    OCEAN ENGINEERING, 2020, 196 (196)
  • [39] Experimental and numerical investigation into the drag performance of dimpled surfaces in a turbulent boundary layer
    van Campenhout, O. W. G.
    van Nesselrooij, M.
    Lin, Y. Y.
    Casacuberta, J.
    van Oudheusden, B. W.
    Hickel, S.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2023, 100
  • [40] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
    Li, Biao-Hui
    Wang, Kang-Jun
    Wang, Yu-Fei
    Jiang, Nan
    CHINESE PHYSICS B, 2022, 31 (02)