Scaling of Spontaneous Rotation with Temperature and Plasma Current in Tokamaks

被引:28
作者
Parra, F. I. [1 ,2 ]
Nave, M. F. F. [1 ,3 ]
Schekochihin, A. A. [1 ]
Giroud, C. [4 ]
de Grassie, J. S. [5 ]
Severo, J. H. F. [6 ]
de Vries, P. [7 ]
Zastrow, K. -D. [4 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[3] Univ Tecn Lisbon, Associacao EURATOM IST, Inst Plasmas & Fusao Nucl, Inst Super Tecn, Lisbon, Portugal
[4] Culham Sci Ctr, Euratom CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England
[5] Gen Atom Co, San Diego, CA USA
[6] Univ Sao Paulo, Inst Phys, BR-05508 Sao Paulo, Brazil
[7] EURATOM, FOM Inst Plasma Phys, Nieuwegein, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
TCV TOKAMAK; TRANSPORT; MODE; TURBULENCE;
D O I
10.1103/PhysRevLett.108.095001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of a momentum injection is found: The velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10 km . s(-1) . MA . keV(-1). When the intrinsic rotation profile is hollow, i.e., it is countercurrent in the core of the tokamak and cocurrent in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.
引用
收藏
页数:5
相关论文
共 46 条
[1]   NONLINEAR ELECTROMAGNETIC GYROKINETIC EQUATIONS FOR ROTATING AXISYMMETRICAL PLASMAS [J].
ARTUN, M ;
TANG, WM .
PHYSICS OF PLASMAS, 1994, 1 (08) :2682-2692
[2]   Critically Balanced Ion Temperature Gradient Turbulence in Fusion Plasmas [J].
Barnes, M. ;
Parra, F. I. ;
Schekochihin, A. A. .
PHYSICAL REVIEW LETTERS, 2011, 107 (11)
[3]   Turbulent Transport in Tokamak Plasmas with Rotational Shear [J].
Barnes, M. ;
Parra, F. I. ;
Highcock, E. G. ;
Schekochihin, A. A. ;
Cowley, S. C. ;
Roach, C. M. .
PHYSICAL REVIEW LETTERS, 2011, 106 (17)
[4]   Direct multiscale coupling of a transport code to gyrokinetic turbulence codes [J].
Barnes, M. ;
Abel, I. G. ;
Dorland, W. ;
Goerler, T. ;
Hammett, G. W. ;
Jenko, F. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[5]   Consequences of profile shearing on toroidal momentum transport [J].
Camenen, Y. ;
Idomura, Y. ;
Jolliet, S. ;
Peeters, A. G. .
NUCLEAR FUSION, 2011, 51 (07)
[6]   Transport of Parallel Momentum Induced by Current-Symmetry Breaking in Toroidal Plasmas [J].
Camenen, Y. ;
Peeters, A. G. ;
Angioni, C. ;
Casson, F. J. ;
Hornsby, W. A. ;
Snodin, A. P. ;
Strintzi, D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (12)
[7]   An Eulerian gyrokinetic-Maxwell solver [J].
Candy, J ;
Waltz, RE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :545-581
[8]   Anomalous parallel momentum transport due to E x B flow shear in a tokamak plasma [J].
Casson, F. J. ;
Peeters, A. G. ;
Camenen, Y. ;
Hornsby, W. A. ;
Snodin, A. P. ;
Strintzi, D. ;
Szepesi, G. .
PHYSICS OF PLASMAS, 2009, 16 (09)
[9]   Evaluation of the neoclassical radial electric field in a collisional tokamak [J].
Catto, PJ ;
Simakov, AN .
PHYSICS OF PLASMAS, 2005, 12 (01) :1-12
[10]   A review of internal transport barrier physics for steady-state operation of tokamaks [J].
Connor, JW ;
Fukuda, T ;
Garbet, X ;
Gormezano, C ;
Mukhovatov, V ;
Wakatani, M .
NUCLEAR FUSION, 2004, 44 (04) :R1-R49