A Research on Extracting Road Network from High Resolution Remote Sensing Imagery

被引:0
|
作者
Xu, Yongyang [1 ]
Feng, Yaxing [1 ]
Xie, Zhong [1 ,2 ]
Hu, Anna [1 ]
Zhang, Xueman [1 ]
机构
[1] China Univ Geosci, Dept Informat Engn, Wuhan 430074, Peoples R China
[2] Natl Engn Res Ctr Geog Informat Syst, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Road network extraction; deep learning; remote sensing imagery; convolutional neural network; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The road network plays an important role for traffic management, GPS navigation and many other applications. Extracting the road from a high remote sensing (RS) imagery has been a hot research topic in recent years. The road structure always changing as the terrain, thus, how to extract the features of road network and identify the roads from RS imagery efficiently still a challenging. In this paper, we propose a road extraction method for RS imagery using the deep convolutional neural network, which is designed based on the deep residual networks and take full advantages of the U-net. Road network data form Las Vegas, America, are used to validate the method, and experiments show that the proposed model of deep convolutional neural network can extract road network accurately and effectively.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Research Status on Road Information Extraction from High Resolution Imagery
    Chen, Hao
    Ma, Li
    Liang, Tian
    MANUFACTURING PROCESS AND EQUIPMENT, PTS 1-4, 2013, 694-697 : 1970 - +
  • [42] Identification of shelterbelt width from high-resolution remote sensing imagery
    Deng, Rongxin
    Yang, Gao
    Li, Ying
    Xu, Zhengran
    Zhang, Xing
    Zhang, Lu
    Li, Chunjing
    AGROFORESTRY SYSTEMS, 2022, 96 (08) : 1091 - 1101
  • [43] Study on hierarchical building extraction from high resolution remote sensing imagery
    You Y.
    Wang S.
    Wang B.
    Ma Y.
    Shen M.
    Liu W.
    Xiao L.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (01): : 125 - 136
  • [44] Building area extraction from the high spatial resolution remote sensing imagery
    Shi, Wenzao
    Mao, Zhengyuan
    Liu, Jinqing
    EARTH SCIENCE INFORMATICS, 2019, 12 (01) : 19 - 29
  • [45] Object Oriented Information Extraction from High Resolution Remote Sensing Imagery
    Ma, Hongbin
    Zhang, Cun
    Yang, Shengfei
    Xu, Junfang
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1128 - 1132
  • [46] A New Building Recognition Algorithm from High Resolution Remote Sensing Imagery
    Chen, Z.
    Wang, G. Y.
    Liu, J. G.
    Cheng, C. J.
    Deng, J. H.
    MIPPR 2011: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2011, 8006
  • [47] Identification of shelterbelt width from high-resolution remote sensing imagery
    Rongxin Deng
    Gao Yang
    Ying Li
    Zhengran Xu
    Xing Zhang
    Lu Zhang
    Chunjing Li
    Agroforestry Systems, 2022, 96 : 1091 - 1101
  • [48] Building area extraction from the high spatial resolution remote sensing imagery
    Wenzao Shi
    Zhengyuan Mao
    Jinqing Liu
    Earth Science Informatics, 2019, 12 : 19 - 29
  • [49] Urban land use extraction from Very High Resolution remote sensing imagery using a Bayesian network
    Li, Mengmeng
    Stein, Alfred
    Bijker, Wietske
    Zhan, Qingming
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 122 : 192 - 205
  • [50] A new process for the segmentation of high resolution remote sensing imagery
    Chen, Z.
    Zhao, Z.
    Gong, P.
    Zeng, B.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (22) : 4991 - 5001