A Research on Extracting Road Network from High Resolution Remote Sensing Imagery

被引:0
|
作者
Xu, Yongyang [1 ]
Feng, Yaxing [1 ]
Xie, Zhong [1 ,2 ]
Hu, Anna [1 ]
Zhang, Xueman [1 ]
机构
[1] China Univ Geosci, Dept Informat Engn, Wuhan 430074, Peoples R China
[2] Natl Engn Res Ctr Geog Informat Syst, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Road network extraction; deep learning; remote sensing imagery; convolutional neural network; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The road network plays an important role for traffic management, GPS navigation and many other applications. Extracting the road from a high remote sensing (RS) imagery has been a hot research topic in recent years. The road structure always changing as the terrain, thus, how to extract the features of road network and identify the roads from RS imagery efficiently still a challenging. In this paper, we propose a road extraction method for RS imagery using the deep convolutional neural network, which is designed based on the deep residual networks and take full advantages of the U-net. Road network data form Las Vegas, America, are used to validate the method, and experiments show that the proposed model of deep convolutional neural network can extract road network accurately and effectively.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Multiscale Progressive Segmentation Network for High-Resolution Remote Sensing Imagery
    Hang, Renlong
    Yang, Ping
    Zhou, Feng
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [22] Edge-Reinforced Convolutional Neural Network for Road Detection in Very-High-Resolution Remote Sensing Imagery
    Lu, Xiaoyan
    Zhong, Yanfei
    Zheng, Zhuo
    Zhao, Ji
    Zhang, Liangpei
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2020, 86 (03): : 153 - 160
  • [23] Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network
    Fu, Gang
    Liu, Changjun
    Zhou, Rong
    Sun, Tao
    Zhang, Qijian
    REMOTE SENSING, 2017, 9 (05)
  • [24] IS-RoadDet: Road Vector Graph Detection With Intersections and Road Segments From High-Resolution Remote Sensing Imagery
    Yang, Ruoyu
    Zhong, Yanfei
    Liu, Yinhe
    Chen, Dingyuan
    Pan, Yang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [25] An algorithm for extracting road network from multi-band remote sensing images
    Cai, T.
    Wang, R.
    Ruan Jian Xue Bao/Journal of Software, 2001, 12 (06): : 943 - 948
  • [26] Deep Learning Method for Large-Scale Road Extraction from High Resolution Remote Sensing Imagery
    Lu X.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (05): : 821
  • [27] BT-RoadNet: A boundary and topologically-aware neural network for road extraction from high-resolution remote sensing imagery
    Zhou, Mingting
    Sui, Haigang
    Chen, Shanxiong
    Wang, Jindi
    Chen, Xu
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 168 (168) : 288 - 306
  • [28] A Convolutional Neural Network for Coastal Aquaculture Extraction from High-Resolution Remote Sensing Imagery
    Deng, Jinpu
    Bai, Yongqing
    Chen, Zhengchao
    Shen, Ting
    Li, Cong
    Yang, Xuan
    SUSTAINABILITY, 2023, 15 (06)
  • [29] B-FGC-Net: A Building Extraction Network from High Resolution Remote Sensing Imagery
    Wang, Yong
    Zeng, Xiangqiang
    Liao, Xiaohan
    Zhuang, Dafang
    REMOTE SENSING, 2022, 14 (02)
  • [30] A Context Feature Enhancement Network for Building Extraction from High-Resolution Remote Sensing Imagery
    Chen, Jinzhi
    Zhang, Dejun
    Wu, Yiqi
    Chen, Yilin
    Yan, Xiaohu
    REMOTE SENSING, 2022, 14 (09)