High toluene sensing properties of NiO-SnO2 composite nanofiber sensors operating at 330 °C

被引:139
作者
Liu, Li [1 ]
Zhang, Yu [2 ]
Wang, Guoguang [1 ]
Li, Shouchun [1 ]
Wang, Lianyuan [1 ]
Han, Yu [1 ]
Jiang, Xiaoxue [3 ]
Wei, Aiguo [1 ]
机构
[1] Jilin Univ, State Key Lab Superhard Mat, Coll Phys, Changchun 130012, Peoples R China
[2] Jilin Univ, State Key Lab Integrated Optoelect, Coll Elect Sci & Engn, Changchun 130012, Peoples R China
[3] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130012, Peoples R China
关键词
Semiconductors; Nanostructures; Nanofibers; Gas sensors; One-dimensional nanostructures; GAS SENSOR; THIN-FILM; CHEMICAL SENSORS; HIGH-SENSITIVITY; CERAMIC SENSORS; ZNO NANORODS; METAL; NANOPARTICLES; NANOBELTS; SURFACE;
D O I
10.1016/j.snb.2011.08.007
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
NiO-SnO2 composite nanofibers are synthesized by electrospinning of a poly(vinyl pyrroridone) (PVP)/SnCl2 center dot 2H(2)O/NiCl2 solution. Indirect-heated sensors are fabricated by coating the nanofibers on ceramic tubes with signal electrodes. The obtained nanofibers are analyzed by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The sensors are tested at different temperatures to various gases. High toluene sensing properties are observed at 330 degrees C, and the corresponding response value (Ra/Rg), response time, and recovery time are about 11.2s, and 4s to 50 ppm toluene at this condition. Good selectivity and excellent stability are also observed based on the sensors at this temperature. These high sensor performances are explained by the sensing enhancement brought about by NiO addition and the one-dimensional nanostructure of nanofibers. (C) 2011 Elsevier By. All rights reserved.
引用
收藏
页码:448 / 454
页数:7
相关论文
共 37 条
[1]   Hydrogen sensitivity of doped CuO/ZnO heterocontact sensors [J].
Aygün, S ;
Cann, D .
SENSORS AND ACTUATORS B-CHEMICAL, 2005, 106 (02) :837-842
[2]   Metal oxide-based gas sensor research: How to? [J].
Barsan, N. ;
Koziej, D. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) :18-35
[3]   Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2 [J].
Belmonte, JC ;
Manzano, J ;
Arbiol, J ;
Cirera, A ;
Puigcorbé, J ;
Vilà, A ;
Sabaté, N ;
Gràcia, I ;
Cané, C ;
Morante, JR .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 114 (02) :881-892
[4]   Effect of nickel ions on sensitivity of In2O3 thin film sensors to NO2 [J].
Bogdanov, P ;
Ivanovskaya, M ;
Comini, E ;
Faglia, G ;
Sberveglieri, G .
SENSORS AND ACTUATORS B-CHEMICAL, 1999, 57 (1-3) :153-158
[5]   Microstructure and structure of NiO-SnO2 and Fe2O3-SnO2 systems [J].
Castro, RHR ;
Hidalgo, P ;
Muccillo, R ;
Gouvêa, D .
APPLIED SURFACE SCIENCE, 2003, 214 (1-4) :172-177
[6]   Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity [J].
Chen, YJ ;
Nie, L ;
Xue, XY ;
Wang, YG ;
Wang, TH .
APPLIED PHYSICS LETTERS, 2006, 88 (08)
[7]   Characterization and electrochemical response of sonogel carbon electrode modified with nanostructured zirconium dioxide film [J].
Chen, Yongjun ;
Lunsford, Suzanne ;
Dionysiou, Dionysios D. .
SENSORS AND ACTUATORS B-CHEMICAL, 2009, 137 (01) :291-296
[8]   Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? [J].
Franke, ME ;
Koplin, TJ ;
Simon, U .
SMALL, 2006, 2 (01) :36-50
[9]   Electrospinning: A fascinating method for the preparation of ultrathin fibres [J].
Greiner, Andreas ;
Wendorff, Joachim H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (30) :5670-5703
[10]  
GUONG ND, 2009, SENSOR ACTUAT B-CHEM, V140, P240