Variational approach to second-order damped Hamiltonian systems with impulsive effects

被引:14
作者
Liu, Jian [1 ]
Zhao, Zengqin [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
Hamiltonian systems; variational method; impulsive effects; damped vibration; PERIODIC-SOLUTIONS; DIFFERENTIAL-EQUATIONS; MULTIPLICITY;
D O I
10.22436/jnsa.009.06.01
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of second-order damped vibration Hamiltonian systems with impulsive effects. We obtain some new existence theorems of solutions by using variational methods. (C) 2016 All rights reserved.
引用
收藏
页码:3459 / 3472
页数:14
相关论文
共 18 条
[1]   Infinitely many periodic solutions for a second-order nonautonomous system [J].
Faraci, F ;
Livrea, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (03) :417-429
[2]  
Liu J., 2014, ELECT J DIFFERENTIAL, V2014
[3]  
Mawhin J, 1989, CRITICAL POINTS THEO
[4]   Variational formulation of a damped Dirichlet impulsive problem [J].
Nieto, Juan J. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (08) :940-942
[5]   Variational approach to impulsive differential equations [J].
Nieto, Juan J. ;
O'Regan, Donal .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :680-690
[6]  
Rabinowitz P. H., 1986, CBMS Reg. Conf. Series in Math
[7]   The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method [J].
Sun, Juntao ;
Chen, Haibo ;
Yang, Liu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :440-449
[8]   The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects [J].
Sun, Juntao ;
Chen, Haibo ;
Nieto, Juan J. ;
Otero-Novoa, Mario .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4575-4586
[9]   Existence and multiplicity of periodic solutions for nonautonomous second order systems [J].
Tang, CL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :299-304
[10]   Periodic solutions for nonautonomous second order systems with sublinear nonlinearity [J].
Tang, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) :3263-3270