Steering Self-Assembly of Three-Dimensional Iptycenes on Au(111) by Tuning Molecule-Surface Interactions

被引:13
|
作者
Grossmann, Lukas [1 ,2 ]
Ringel, Eva [1 ,2 ]
Rastgoo-Lahrood, Atena [1 ,2 ]
King, Benjamin T. [3 ]
Rosen, Johanna [4 ]
Heckl, Wolfgang M. [1 ,2 ]
Opris, Dorina [5 ]
Bjoerk, Jonas [4 ]
Lackinger, Markus [1 ,2 ]
机构
[1] Deutsch Museum, Museumsinsel 1, D-80538 Munich, Germany
[2] Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany
[3] Univ Nevada, Dept Chem, Reno, NV 89557 USA
[4] Linkoping Univ, Dept Phys Chem & Biol, IFM, S-58183 Linkoping, Sweden
[5] Empa, Swiss Fed Labs Mat Sci & Technol, Funct Polymers, CH-8600 Dubendorf, Switzerland
基金
瑞典研究理事会;
关键词
Crystal Engineering; Scanning Tunneling Microscopy; Self-Assembly; Surface-Passivation; Triptycene; NANOPOROUS 2-DIMENSIONAL POLYMER; PORPHYRINS; CHEMISTRY; DESIGN;
D O I
10.1002/anie.202201044
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembly of three-dimensional molecules is scarcely studied on surfaces. Their modes of adsorption can exhibit far greater variability compared to (nearly) planar molecules that adsorb mostly flat on surfaces. This additional degree of freedom can have decisive consequences for the expression of intermolecular binding motifs, hence the formation of supramolecular structures. The determining molecule-surface interactions can be widely tuned, thereby providing a new powerful lever for crystal engineering in two dimensions. Here, we study the self-assembly of triptycene derivatives with anthracene blades on Au(111) by Scanning Tunneling Microscopy, Near Edge X-ray Absorption Fine Structure and Density Functional Theory. The impact of molecule-surface interactions was experimentally tested by comparing pristine with iodine-passivated Au(111) surfaces. Thereby, we observed a fundamental change of the adsorption mode that triggered self-assembly of an entirely different structure.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Self-assembly of three-dimensional Au inductors on silicon
    Kiziroglou, M. E.
    Mukherjee, A. G.
    Vatti, S.
    Holmes, A. S.
    Papavassiliou, C.
    Yeatman, E. M.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2010, 4 (11) : 1698 - 1703
  • [2] Au adatoms in self-assembly of benzenethiol on the Au(111) surface
    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
    不详
    不详
    J. Am. Chem. Soc., 2008, 24 (7518-7519):
  • [3] Self-assembly of methanethiol on the reconstructed Au(111) surface
    Nenchev, Georgi
    Diaconescu, Bogdan
    Hagelberg, Frank
    Pohl, Karsten
    PHYSICAL REVIEW B, 2009, 80 (08)
  • [4] Three-dimensional mesoscale self-assembly
    Huck, WTS
    Tien, J
    Whitesides, GM
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (32) : 8267 - 8268
  • [5] High-Dimensional Atomistic Neural Network Potentials for Molecule-Surface Interactions: HCl Scattering from Au(111)
    Kolb, Brian
    Luo, Xuan
    Zhou, Xueyao
    Jiang, Bin
    Guo, Hua
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (03): : 666 - 672
  • [6] Self-assembly of phosphorylated dihydroceramide at Au(111) electrode surface
    Pawlowski, Jan
    Juhaniewicz, Joanna
    Sek, Slawomir
    MATERIALS CHEMISTRY AND PHYSICS, 2017, 186 : 212 - 219
  • [7] Self-assembly of phospholipid molecules at a Au(111) electrode surface
    1600, American Chemical Society, Columbus, United States (126):
  • [8] Self-assembly and growth of manganese phthalocyanine on an Au(111) surface
    Jiang Yu-Hang
    Liu Li-Wei
    Yang Kai
    Xiao Wen-De
    Gao Hong-Jun
    CHINESE PHYSICS B, 2011, 20 (09)
  • [9] Self-assembly and growth of manganese phthalocyanine on an Au(111) surface
    姜宇航
    刘立巍
    杨锴
    肖文德
    高鸿钧
    Chinese Physics B, 2011, 20 (09) : 320 - 324
  • [10] Molecular Self-Assembly of Phenylselenyl Chloride on a Au(111) Surface
    Han, Myoung-Soo
    Seong, Sicheon
    Han, Seulki
    Lee, Nam-Suk
    Noh, Jaegeun
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2020, 41 (11) : 1048 - 1051