A projected decrease in lightning under climate change

被引:128
作者
Finney, Declan L. [1 ,4 ]
Doherty, Ruth M. [1 ]
Wild, Oliver [2 ]
Stevenson, David S. [1 ]
MacKenzie, Ian A. [1 ]
Blyth, Alan M. [3 ]
机构
[1] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland
[2] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England
[3] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England
[4] Univ Leeds, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England
基金
英国自然环境研究理事会;
关键词
TROPOSPHERIC OZONE; ATMOSPHERIC CHEMISTRY; NOX PRODUCTION; MODEL; EMISSIONS; SCHEME; PARAMETERIZATION; SIMULATIONS; SENSITIVITY; IMPACT;
D O I
10.1038/s41558-018-0072-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lightning strongly influences atmospheric chemistry(1-3), and impacts the frequency of natural wildfires(4). Most previous studies project an increase in global lightning with climate change over the coming century(1,5-7), but these typically use parameterizations of lightning that neglect cloud ice fluxes, a component generally considered to be fundamental to thunderstorm charging(8). As such, the response of lightning to climate change is uncertain. Here, we compare lightning projections for 2100 using two parameterizations: the widely used cloud-top height (CTH) approach(9), and a new upward cloud ice flux (IFLUX) approach(10) that overcomes previous limitations. In contrast to the previously reported global increase in lightning based on CTH, we find a 15% decrease in total lightning flash rate with IFLUX in 2100 under a strong global warming scenario. Differences are largest in the tropics, where most lightning occurs, with implications for the estimation of future changes in tropospheric ozone and methane, as well as differences in their radiative forcings. These results suggest that lightning schemes more closely related to cloud ice and microphysical processes are needed to robustly estimate future changes in lightning and atmospheric composition.
引用
收藏
页码:210 / +
页数:6
相关论文
共 57 条
[1]   Evaluation of lightning flash rate parameterizations for use in a global chemical transport model [J].
Allen, DJ ;
Pickering, KE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D23)
[2]  
[Anonymous], 1996, WMO/TD737, World Climate Research Programme (ICSU and WMO)
[3]   Lightning NOx, a key chemistry-climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity [J].
Banerjee, A. ;
Archibald, A. T. ;
Maycock, A. C. ;
Telford, P. ;
Abraham, N. L. ;
Yang, X. ;
Braesicke, P. ;
Pyle, J. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (18) :9871-9881
[4]   CELLS v1.0: updated and parallelized version of an electrical scheme to simulate multiple electrified clouds and flashes over large domains [J].
Barthe, C. ;
Chong, M. ;
Pinty, J-P. ;
Bovalo, C. ;
Escobar, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2012, 5 (01) :167-184
[5]   Estimation of total lightning from various storm parameters: A cloud-resolving model study [J].
Barthe, Christelle ;
Deierling, Wiebke ;
Barth, Mary C. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[6]   An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models [J].
Basarab, B. M. ;
Rutledge, S. A. ;
Fuchs, B. R. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (18) :9481-9499
[7]   The importance of NOx production by lightning in the tropics [J].
Bond, DW ;
Steiger, S ;
Zhang, RY ;
Tie, XX ;
Orville, RE .
ATMOSPHERIC ENVIRONMENT, 2002, 36 (09) :1509-1519
[8]   Gridded lightning climatology from TRMM-LIS and OTD: Dataset description [J].
Cecil, Daniel J. ;
Buechler, Dennis E. ;
Blakeslee, Richard J. .
ATMOSPHERIC RESEARCH, 2014, 135 :404-414
[9]   Parameterization-based uncertainty in future lightning flash density [J].
Clark, Spencer K. ;
Ward, Daniel S. ;
Mahowald, Natalie M. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (06) :2893-2901
[10]  
Collins M., 2013, PHYS SCI BASIS